Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.6.516

Effect of Residual Droplet on the Solution-Grown SiC Single Crystals  

Ha, Minh-Tan (Energy Efficient Materials Center, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology)
Shin, Yun-Ji (Energy Efficient Materials Center, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology)
Bae, Si-Young (Energy Efficient Materials Center, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology)
Yoo, Yong-Jae (Energy Efficient Materials Center, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology)
Jeong, Seong-Min (Energy Efficient Materials Center, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.6, 2019 , pp. 516-521 More about this Journal
Abstract
The top seeded solution growth (TSSG) method is an alternative technique to grow high-quality SiC crystals that has been actively studied for the last two decades. However, the TSSG method has different issues that need to be resolved when compared to the commercial SiC crystal growing method, i.e., physical vapor transport (PVT). A particular issue of the TSSG method of results from the presence of liquid droplets on the grown crystal that can remain even after crystal growth; this induces residual stress on the crystal surface. Hence, the residual droplet causes several unwanted effects on the crystal such as the initiation of micro-cracks, micro-pipes, and polytype inclusions. Therefore, this study investigated the formation of the residual droplet through multiphysics simulations and lead to the development of a liquid droplet removal method. As a result, we found that although residual liquid droplets significantly apply residual stress on the grown crystal, these could be vaporized by adopting thermal annealing processes after the relevant crystal growing steps.
Keywords
SiC; Singe crystal growth; Solution growth; Liquid droplet;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. T. Ha, Y. J. Shin, M. H. Lee, C. J. Kim, and S. M. Jeong, Phys. Status Solidi A, 215, 1701017 (2018). [DOI: https://doi.org/10.1002/pssa.201701017]   DOI
2 P. Yue, C. Zhou, J. J. Feng, C. F. Ollivier-Gooch, and H. H. Hu, J. Comput. Phys., 219, 47 (2006). [DOI: https://doi.org/10.1016/j.jcp.2006.03.016]   DOI
3 A. Novick-Cohen and L. A. Segel, Phys. D, 10, 277 (1984). [DOI: https://doi.org/10.1016/0167-2789(84)90180-5]   DOI
4 A. Cartalade, A. Younsi, E. Regnier, and S. Schuller, Procedia Mater. Sci., 7, 72 (2014). [DOI: https://doi.org/10.1016/j.mspro.2014.10.010]   DOI
5 P. G. Drazin and N. Riley, The Navier- Stokes Equations: A Classification of Flows and Exact Solutions (Cambridge University Press, Cambridge, 2006). p. 45.
6 J. W. Cahn and J. E. Hilliard, J. Chem. Phys., 28, 258 (1958). [DOI: https://doi.org/10.1063/1.1744102]   DOI
7 C. M. Elliott and Z. Songmu, Arch. Ration. Mech. Anal., 96, 339 (1986). [DOI: https://doi.org/10.1007/BF00251803]   DOI
8 F. Millot, V. Sarou-Kanian, J. C. Rifflet, and B. Vinet, Mater. Sci. Eng., A, 495, 8 (2008). [DOI: https://doi.org/10.1016/j.msea.2007.10.108]   DOI
9 T. J. Whalen and A. T. Anderson, J. Am. Ceram. Soc., 58, 396 (1975). [DOI: https://doi.org/10.1111/j.1151-2916.1975.tb19006.x]   DOI
10 W. M. Haynes, CRC Handbook of Chemistry and Physics: A Ready-reference Book of Chemical and Physical Data (CRC Press, Boca Raton; London; New York, 2014) p. 132.
11 D.K.L. Tsang, B. J. Marsden, S. L. Fok, and G. Hall, Carbon, 43, 2902 (2005). [DOI: https://doi.org/10.1016/j.carbon.2005.06.009]   DOI
12 Z. Li and R. C. Bradt, J. Appl. Phys., 60, 612 (1986). [DOI: https://doi.org/10.1063/1.337456]   DOI
13 Y. Okada and Y. Tokumaru, J. Appl. Phys., 56, 314 (1984). [DOI: https://doi.org/10.1063/1.333965]   DOI
14 K. E. Petersen, Proc. IEEE, 70, 420 (1982). [DOI: https://doi.org/10.1109/PROC.1982.12331]   DOI
15 P. Hess, Appl. Surf. Sci., 106, 429 (1996). [DOI: https://doi.org/10.1016/S0169-4332(96)00369-8]   DOI
16 C. L. Burdick and E. A. Owen, J. Am. Chem. Soc., 40, 1749 (1918). [DOI: https://doi.org/10.1021/ja02245a001]   DOI
17 P. E. Tomaszewski, Phase Transit., 38, 127 (1992). [DOI: https://doi.org/10.1080/01411599208222899]   DOI
18 I. B. Mason and R. H. Knibbs, Carbon, 5, 493 (1967). [DOI: https://doi.org/10.1016/0008-6223(67)90026-7]   DOI
19 E. Jung, Y. Kim, Y. J. Kwon, C. Y. Lee, M. H. Lee, W. J. Lee, D. J. Choi, and S. M. Jeong, Ceram. Int., 44, 22632 (2018). [DOI: https://doi.org/10.1016/j.ceramint.2018.09.039]   DOI
20 Y. M. Tairov and V. F. Tsvetkov, J. Cryst. Growth, 43, 209 (1978). [DOI: https://doi.org/10.1016/0022-0248(78)90169-0]   DOI
21 O. Kordina, C. Hallin, A. Ellison, A. S. Bakin, I. G. Ivanov, A. Henry, R. Yakimova, M. Touminen, A. Vehanen, and E. Janzen, Appl. Phys. Lett., 69, 1456 (1996). [DOI: https://doi.org/10.1063/1.117613]   DOI
22 D. H. Nam, B. G. Kim, J. Y. Yoon, M. H. Lee, W. S. Seo, S. M. Jeong, C. W. Yang, and W. J. Lee, Cryst. Growth Des., 14, 5569 (2014). [DOI: https://doi.org/10.1021/cg5008186]   DOI
23 D. H. Hofmann and M. H. Muller, Mater. Sci. Eng., B, 61, 29 (1999). [DOI: https://doi.org/10.1016/S0921-5107(98)00440-1]   DOI
24 T. Ujihara, R. Maekawa, R. Tanaka, K. Sasaki, K. Kuroda, and Y. Takeda, J. Cryst. Growth, 310, 1438 (2008). [DOI: https://doi.org/10.1016/j.jcrysgro.2007.11.210]   DOI
25 M. T. Ha, Y. J. Yu, Y. J. Shin, S. Y. Bae, M. H. Lee, C. J. Kim, and S. M. Jeong, RSC Adv., 9, 26327 (2019). [DOI: https://doi.org/10.1039/C9RA04930D]   DOI
26 Y. J. Yu, D. S. Byeon, Y. J. Shin, S. H. Choi, M. H. Lee, W. J. Lee, and S. M. Jeong, Cryst. Eng. Comm., 19, 6731 (2017). [DOI: https://doi.org/10.1039/C7CE01641G]   DOI