• Title/Summary/Keyword: annealing ambient

Search Result 319, Processing Time 0.024 seconds

Synthesis of Zinc Oxide Nano Rods, Sheet and Flower at $80^{\circ}C$ by the Sol-gel Method

  • Wahab, Rizwan;Ansari, S.G.;Kim, Y.S.;Dar, M.A.;Shin, H.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.676-677
    • /
    • 2006
  • Synthesis of zinc oxide nanorods, sheets and flower like structure were done by the sol-gel method using zinc acetate dihydrate and sodium hydroxide at $80^{\circ}C$ with 12 hours refluxing time nanorods, in case of as synthesized powder, with diameter of 20-60nm. Annealing at higher temperature (300 and $500^{\circ}C$,) in air ambient changes the morphology to sheet and flower like structure. The standard peak of zinc oxide was observed in IR at $523cm^{-1}$. The UV-VIS spectroscopy of zinc oxide shows a characteristic peak at 375nm.

  • PDF

Characterization and annealing effect of tantalum oxide thin film by thermal chemical (열CVD방법으로 증착시킨 탄탈륨 산화박막의 특성평가와 열처리 효과)

  • Nam, Gap-Jin;Park, Sang-Gyu;Lee, Yeong-Baek;Hong, Jae-Hwa
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.42-54
    • /
    • 1995
  • $Ta_2O_5$ thin film IS a promising material for the high dielectrics of ULSI DRAM. In this study, $Ta_2O_5$ thin film was grown on p-type( 100) Si wafer by thermal metal organic chemical vapo deposition ( MCCVD) method and the effect of operating varialbles including substrate temperature( $T_s$), bubbler temperature( $T_ \sigma$), reactor pressure( P ) was investigated in detail. $Ta_2O_5$ thin film were analyzed by SEM, XRD, XPS, FT-IR, AES, TEM and AFM. In addition, the effect of various anneal methods was examined and compared. Anneal methods were furnace annealing( FA) and rapid thermal annealing( RTA) in $N_{2}$ or $O_{2}$ ambients. Growth rate was evidently classified into two different regimes. : (1) surface reaction rate-limited reglme in the range of $T_s$=300 ~ $400 ^{\circ}C$ and (2: mass transport-limited regime in the range of $T_s$=400 ~ $450^{\circ}C$.It was found that the effective activation energies were 18.46kcal/mol and 1.9kcal/mol, respectively. As the bubbler temperature increases, the growth rate became maximum at $T_ \sigma$=$140^{\circ}C$. With increasing pressure, the growth rate became maximum at P=3torr but the refractive index which is close to the bulk value of 2.1 was obtained in the range of 0.1 ~ 1 torr. Good step coverage of 85. 71% was obtained at $T_s$=$400 ^{\circ}C$ and sticking coefficient was 0.06 by comparison with Monte Carlo simulation result. From the results of AES, FT-IR and E M , the degree of SiO, formation at the interface between Si and TazO, was larger in the order of FA-$O_{2}$ > RTA-$O_{2}$, FA-$N_{2}$ > RTA-$N_{2}$. However, the $N_{2}$ ambient annealing resulted in more severe Weficiency in the $Ta_2O_5$ thin film than the TEX>$O_{2}$ ambient.

  • PDF

Nano-Mechanical Studies of HfOx Thin Film for Oxygen Outgasing Effect during the Annealing Process (고온 열처리 과정에서 산소 Outgasing 효과에 의한 HfOx 박막의 Nanomechanics 특성 연구)

  • Park, Myung Joon;Kim, Sung Joon;Lee, Si Hong;Kim, Soo In;Lee, Chang Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.245-249
    • /
    • 2013
  • The $HfO_X$ thin film was deposited what it has been paid attention to the next generation oxide thin layer of MOSFET (metal-Oxide semiconductor field-effect-transistor) by rf magnetron sputter on Si (100) substrate. The $HfO_X$ thin film was deposited using a various oxygen gas flows (5, 10, 15 sccm). After deposition, $HfO_X$ thin films were annealed from 400 to $800^{\circ}C$ for 20 min in nitrogen ambient. The electrical characteristics of the $HfO_X$ thin film was improved by leakage current properties, depending on the increase of oxygen gas flow and annealing temperature. In particular, the properties of nano-mechanics of $HfO_X$ thin films were measured by AFM and Nano-indenter. From the results, the maximum indentation depth at the basis of maximum indentation force was increased from 24.9 to 38.8 nm according to increase the annealing temperature. Especially, the indentation depth was increased rapidly at $800^{\circ}C$. The rapid increasement of indentation depth was expected to be due to the change of residual stress in the $HfO_X$ thin film, and this result was caused by relative flux of oxygen outgasing during the annealing process.

Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method (마그네트론 코스퍼터링법으로 형성한 SiO2/Si 양자점 초격자 구조의 특성)

  • Park, Young-Bin;Kim, Shin-Ho;Ha, Rin;Lee, Hyun-Ju;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.586-591
    • /
    • 2010
  • Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.

Effect of the Thickness and the Annealing Conditions of the Catalytic Ni Films on the Graphene Films Grown by a Rapid-Thermal Pulse CVD (Rapid-Thermal Pulse 화학증착법에 의해 증착된 그래핀 박막에서 촉매금속 Ni의 두께 및 열처리 조건의 영향)

  • Na, Sin-Hye;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.78-82
    • /
    • 2011
  • Mono- and few-layer graphenes were grown on Ni thin films by rapid-thermal pulse chemical vapor deposition technique. In the growth steps, the exposure step for 60 s in $H_2$ (a flow rate of 10 sccm (standard cubic centimeters per minute)) atmosphere after graphene growth was specially established to improve the quality of the graphenes. The graphene films grown by exposure alone without $H_2$ showed an intensity ratio of $I_G/I_{2D}$ = 0.47, compared with a value of 0.38 in the films grown by exposure in H2 ambient. The quality of the graphenes can be improved by exposure for 60 s in $H_2$ ambient after the growth of the graphene films. The physical properties of the graphene films were investigated for the graphene films grown on various Ni film thicknesses and on 260-nm thick Ni films annealed at 500 and $700^{\circ}C$. The graphene films grown on 260-nm thick Ni films at $900^{\circ}C$ showed the lowest $I_G/I_{2D}$ ratio, resulting in the fewest layers. The graphene films grown on Ni films annealed at $700^{\circ}C$ for 2 h showed a decrease of the number of layers. The graphene films were dependent on the thickness and the grain size of the Ni films.

Thermal Stability and Electrical Properties of $HfO_xN_y$ ($HfO_2$) Gate Dielectrics with TaN Gate Electrode (TaN 게이트 전극을 가진 $HfO_xN_y$ ($HfO_2$) 게이트 산화막의 열적 안정성)

  • Kim, Jeon-Ho;Choi, Kyu-Jeong;Yoon, Soon-Gil;Lee, Won-Jae;Kim, Jin-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.54-57
    • /
    • 2003
  • [ $HfO_xN_y$ ] films using a hafnium tertiary-butoxide $(Hf[OC(CH_3)_3]_4)$ in plasma and $N_2$ ambient were prepared to improve the thermal stability of hafnium-based gate dielectrics. A 10% nitrogen incorporation into $HfO_2$ films showed a smooth surface morphology and a crystallization temperature as high as $200^{\circ}C$ compared with pure $HfO_2$ films. The $TaN/HfO_xN_y/Si$ capacitors showed a stable capacitance-voltage characteristics even at post-metal annealing temperature of $1000^{\circ}C$ in $N_2$ ambient and a constant value of 1.6 nm EOT (equivalent oxide thickness) irrespective of an increase of PDA and PMA temperature. Leakage current densities of $HfO_xN_y$ capacitors annealed at PDA temperature of 800 and $900^{\circ}C$, respectively were approximately one order of magnitude lower than that of $HfO_2$ capacitors.

  • PDF

Growth and Characteristics of IrO2 Thin Films for Application as Bottom Electrodes of Ferroelectric Capacitors (Ferroelectric 캐패시터의 하부전극에의 응용을 위한 IrO2 박막 증착 및 특성분석)

  • Hur, Jae-Sung;Choi, Hoon-Sang;Kim, Do-Young;Jang, Yu-Min;Lee, Jang-Hyeok;Choi, In-Hoon
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.69-73
    • /
    • 2003
  • In this work, $IrO_2$thin films as bottom electrode of ferroelectric capacitors were deposited and characterized. The $IrO_2$films deposited in the conditions of 25, 40 and 50% oxygen ambient by sputtering method were annealed at 600, 700 and $800^{\circ}C$, respectively. It was found that the crystallinity and the surface morphology of $IrO_2$films affected the surface properties and electrical properties of SBT thin films prepared by the MOD method. With increasing temperature, the crystallinity and the roughness of $IrO_2$films were also increasing. This increasing of roughness degraded the surface properties and electrical properties of SBT films. We found an optimum condition of $IrO_2$films as bottom electrode for ferroelectric capacitor at 50% oxygen ambient and $600^{\circ}C$ annealing temperature. Electrical characterizations were performed by using$ IrO_2$bottom electrodes grown at an optimum conditions. The remanent polarization ($P_{r}$) of the Pt/SBT/$IrO_2$/$SiO_2$/Si structure was 2.75 $\mu$C/$\textrm{cm}^2$ at an applied voltage of 3 V. The leakage current density was $1.06${\times}$10^{-3}$ A/$\textrm{cm}^2$ at an applied voltage of 3 V.

Colossal magnetoresistance of double-ordered perovskite $Sr_{2}FeMoO_{6}$ ceramics and sputter-deposited films ($Sr_{2}FeMoO_{6}$ 소결체와 스퍼터링법으로 제조된 박막의 초거대자기저항현상에 관한 연구)

  • 이원종;장원위
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 2002
  • Abstract The stoichiometric and double-ordered perovskite $Sr_2FeMoO_6$ (SFMO) polycrystalline ceramics were fabricated by sintering at above $900^{\circ}C$ in $H_2$(5%)/Ar reductive ambient. SMO polycrystals showed good ferromagnetic properties andmagnetrotesistqnce ratios of about 15 % at 8K and 3 % at room temperature. Amorphous SFMO thin films were deposited on $LaA1O_3$ and $SrTiO_3$ single crystal substrates using rf sputtering method with the SFMO polycrystalline ceramic target. Double-ordered perovskite polycrystalline SFMO thin films were fabricated by solid state crystallization by annealing the deposited amorphous films at above $680^{\circ}C$ in $H_2$(5%)/Ar reductive ambient. SFMO thin films exhibited ferromagnetic behavior. Their magnetroresistance ratios, however, were only 0.3~0.5% at 8K and disappeared with increasing the measuring temperature. This was attributed to the absence of magnetic spin tunneling between grains due to the porous structure and non-stoichiometric composition of the deposited films.

Characteristics of the NO/$N_2O$ Nitrided Oxide and Reoxidized Nitrided Oxide for NVSM (비휘발성 기억소자를 위한 NO/$N_2O$ 질화산화막과 재산화 질화산화막의 특성에 관한 연구)

  • 이상은;서춘원;서광열
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.328-334
    • /
    • 2001
  • The characteristics of $NO/N_2O$ nitrided oxide and reoxidized nitrided oxide being studied as super thin gate oxide and gate dielectric layers of nonvolatile semiconductor memory(NVSM) was investigated by dynamic secondary ion mass spectrometry(D-SMS), time-of-flight secondary ion mass spectrometry(ToF-SIMS), and x-ray photoelectron spectroscopy (XPS). The specimen was annealed in $NO/N_2O$ ambient after initial oxide process. The result of D-SIMS exhibits that the center of nitrogen exists at the initial oxide interface and the distribution of nitrogen is wider in the annealing process with $N_2O$ than with NO annealing process. For investigating the condition of nitrogen that exists within the nitrided oxide, ToF-SIMS and XPS analysis were carried out. It was shown that the center of nitrogen investigated by D-SIMS was expected the SiON chemical bonds. The nitrogen near the newly formed reoxide/silicon substrate interface was appeared as $Si_2NO$ chemical bonds, and it is agreed with the distribution of SiN and $Si_2NO$ species by ToF-SIMS.

  • PDF

Synthesis of the Nano-sized SrAl2O4 Phosphors by Wet Processing and its Photoluminescence Properties (SrAl2O4계 축광재료의 습식공정에 의한 나노분말 합성 및 발광특성)

  • Kim, Jung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.477-481
    • /
    • 2008
  • $Eu^{2+}$ and $Dy^{3+}$ co-doped strontium aluminate, $SrAl_2O_4$ long phosphorescent phoshor was fabricated and its photoluminescence was characterized. The phosphor, $SrAl_2O_4:Eu^{2+},Dy^{3+}$ was synthesized by a coprecipitation in which metal salts of $Sr(NO_3)_2$, $Al(NO_3)_3{\cdot}9H_2O$, were dissolved in $(NH_4)_2CO_3$ solution with adding $Eu(NO_3)_3{\cdot}5H_2O$ and $Dy(NO_3)_3{\cdot}5H_2O$ as a activator and co-activator, respectively. The coprecipitated products were separated from solution, washed, and dried in a vacuum dry oven. The dried powders were then mixed with 3 wt% $B_2O_3$ as a flux and heated at $800{\sim}1400^{\circ}C$ for 3 h under the reducing ambient atmosphere of 95%Ar+$5%H_2$ gases. For the synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$, properties of photoluminescence such as emission, excitation and decay time were examined. The emission intensity increased as the annealing temperature increased and showed a maximum peak intensity at 510 nm with a broad band from $400{\sim}650\;nm$. Monitored at 520 nm, the excitation spectrum showed a maximum peak intensity at $315{\sim}320\;nm$ wavelength with a broad band from $200{\sim}500\;nm$ wavelength. The decay time of $SrAl_2O_4:Eu^{2+},Dy^{3+}$ increased as the annealing temperature increased.