• Title/Summary/Keyword: anisotropy of strength

Search Result 205, Processing Time 0.023 seconds

Numerical investigation into particle crushing effects on the shear behavior of gravel

  • Xi Li;Yayan Liu;Guoping Qian;Xueqing Liu;Hao Wang;Guoqing Yin
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.209-219
    • /
    • 2023
  • This paper presents numerical investigations into the particle crushing effect on the shear properties of gravel under direct shear condition. A novel particle crushing model was developed based on the octahedral shear stress criterion and fragment replacement method. A series of direct shear tests were carried out on unbreakable particles and breakable particles with different strengths. The evolutions of the particle crushing, shear strength, volumetric strain behavior, and contact force fabric during shearing were analyzed. It was observed that the number of crushed particles increased with the increase of the shear displacement and axial pressure and decreased with the particle strength increasing. Moreover, the shear strength and volume dilatancy were obviously decreased with particle crushing. The shear displacement of particles starting to crush was close to that corresponding to the peak shear stress got. Besides, the shear-hardening behavior was obviously affected by the number of crushed particles. A microanalysis showed that due to particle crushing, the contact forces and anisotropy decreased. The mechanism of the particle crushing effect on the shear strength was further clarified in terms of the particle friction and interlock.

Experimental Investigation of Wheeler's Hardening Model for Pusan Clays (부산점토의 실험결과에 적용된 Wheeler의 경화모형)

  • Suneel, M.;Chung, S-G;Prasad, K.N.;Rao, K.G.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.855-862
    • /
    • 2004
  • 부산점토에 대하여 Wheeler의 경화모형의 적용성을 평가하였다. 이를 위하여 양산지역의 부산점토에 대한 삼축 및 압밀시험 결과가 이용되있으며, 그 모형에 적합한 매개정수들이 결정되있다. 적용결과 예측된 거동은 실험결과와 정량적으로 잘 일치하는 것으로 나타났으나, 향후 압밀 및 장기거동 해석등을 위하여 더 많은 연구가 요구된다.

  • PDF

Strength Change due to Plastic Deformation in Al 2024 Ultrafine Grained ECAP Metal (ECAP 성형가공한 Al 2024 초미세결정립 재료의 소성변형량에 따른 강도 변화)

  • Choi, Jeong-Woo;Ma, Young-Wha;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1407-1415
    • /
    • 2005
  • Strength change of an over-aged A12024 material was studied after being subjected to stages of severe plastic deformation by ECAP (Equal Channel Angular Pressing). Various kinds of strength value were measured using the conventional tensile test, Rockwell and Vickers hardness and the SP (small punch) test Due to limitation of the specimen size, tension test in transverse direction could not be conducted. Hence, SP test was employed for assessing the strength in transverse direction. Based on TEM observation the measured strength characteristics were explained based on the relation between microstructure, dislocation and strength. As the number of ECAP pass increases, the strength of A12024 was also increased. However, considerable change of strength, which is generally predicted, was not observed in this study. For the strength in transverse direction even decrease of the strength was observed after 6 passes of ECAP. It was argued that this decrease was due to dynamic recovery of dislocation density during or after ECAP processes at $150^{\circ}C$. The strength assessment equation proposed by the authors in the previous paper was shown to be very accurate. This argument was supported by comparing the results of conventional tensile test with those of SP test. It was also pointed that the Rockwell har(3ness value seemed to be able to represent the strength in the transverse direction.

Anisotropy in Strength and Deformation Properties of a Variety of Sands by Plane Strain Compression Tests(Part III) -Shear Deformation Characteristics- (평면변형률압축시험에 의한 각종 모래의 강도.변형특성의 이방성(III) -전단변형 특성-)

  • 박춘식;황성춘;장정욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.95-105
    • /
    • 2000
  • Anisotropy of stiffiness, from extremely small strains to post-failure strains, of isotropically consolidated air-pulviated sands in plane strain compression was studied by using the newly developed instrumentation for small strain measurements. Seven types of sand of the world-wide origins were tested, which have been extensively used for research purposes. Stress-strain relationships for a wide range of strain from about 0.0001% to 10% were obtained with measuring axial and lateral strains locally free from the effects of bedding and membrane penetration errors at the specimen boundaries. It was found that the maximum shear modulus Gmax was irrespective of the angle $\delta$of the $\sigma$1 direction relative to the bedding plane. However, the normalized Gmax was varied with the types of sand. Furthermore, the dependency of the strain and stress level on the stiffness increased as decreased.

  • PDF

Anisotropy in Strength and Deformation Properties of a Variety of Sands by Plane Strain Compression Tests(Part II) -Deformation Characteristics at Extremely Small Strain Level (평면변형률압축시험에 의한 각종 모래의 강도.변형특성의 이방성(II)-미소변형률에서의 변형특성 이방성)

  • 박춘식;장정욱
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.33-46
    • /
    • 1998
  • Anisotropy of stiffness, from extremely small strains to post-failure strains, of isotropically consolidated air-pluviated sands in plane strain compression was studied by using the newly developed instrumentation for small strain measurements. Seven types of sand of the world-wide origins were tested, which have been extensively used for research purposes. Stress-strain at the specimen boundaries. It was found that the maximum Young's modulus $E_{max}$ was irrespective of the angle $\delta$ of the $\delta_1$ direction relative to the bedding plane. However, the normalized$ E_{max}$ was varied with the types of sand. Furthermore, the dependency of the strain and stress level on the stiffness was increased as $\delta$ decreased.

  • PDF

The Tensile Characteristics of Steel Sheets at Various Temperature Conditions (박강판의 온도변화에 따른 인장특성)

  • 이항수;오영근
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.101-110
    • /
    • 2001
  • The thermal problem of press work is classified into two cases. First, the temperature of forming die passively rises due to the heating effect of plastic deformation. The warm forming is the second case in which the external heating is applied to the die and blank holder. So, the purpose of this study is to provide database for the forming characteristics at various temperature conditions. In this study, the tensile test was carried out for the commercial steel sheets such as SCPI and SCP3C with the thickness of 0.7mm and 1.4mm respectively. The tensile strength, total elongation, Lankford value and the flow curve have been obtained at the temperature of $25^{\circ}C$, $50^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$ and $300^{\circ}C$, respectively. From the results, we can see that both the tensile strength and total elongation decrease as the temperature increases. In the light of anisotropy, the effect of thickness is dominant than the material specs. For the temperature dependency of flow curves, there are only small differences for the work-hardening exponent, and the strength intensity decreases monotonically as temperature increases. The present results we useful as input data for the analysis of sheet metal forming processes with the various temperature conditions.

  • PDF

Fatigue Behavior of Fine Grained AM60 Magnesium Alloy Produced by Severe Plastic Deformation (강소성변형된 미세립 AM60 마그네슘 합금의 피로거동)

  • You, In-Dong;Lee, Man-Suk;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.15-19
    • /
    • 2012
  • The fatigue behavior of AM60 magnesium alloy produced by equal channel angular pressing(ECAP) process was investigated through fatigue lifetime and fatigue crack propagation rate tests. The grain structure of the material was refined from 19.2 ${\mu}m$ to 2.3 ${\mu}m$ after 6 passes of ECAP at 493 K. The yield strength(YS) and ultimate tensile strength (UTS) increase after two passes but decrease with further pressing, although the grain size becomes finer with increasing pass number. The softening effect due to texture anisotropy overwhelmed the strengthening effect due to grain refinement after 2 passes. A large enhancement in fatigue strength was achieved after two ECAP passes. The current finding suggests that two passed material is better than the multi-passed material in view of the static strength and fatigue performance.

Anisotropic Version of Mohr-Coulomb Failure Criterion for Transversely Isotropic Rock (횡등방성 암석의 강도해석을 위한 이방성 Mohr-Coulomb 파괴조건식)

  • Lee, Youn-Kyou;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.174-180
    • /
    • 2011
  • An anisotropic version of Mohr-Coulomb failure criterion is proposed in order to provide a strength criterion for transversely isotropic rock. The concept of fabric tensor introduced by Pietruszczak & Mroz (2001) is employed to define the friction angle and cohesion as scalar functions of the fabric tensors. The anisotroy in these two strength parameters are calculated in association with the consideration of the relative rotation between the principal stress coordinate and the principal material triad. The critical plane on which the anisotropic function maximized is found by an optimization technique based on the Lagrange multiplier method. To demonstrate the performance of the anisotropic failure criterion, conventional triaxial tests on the samples having various inclinations of weakness plane are simulated and the resulting triaxial strength and dip angle of failure plane are discussed.

DEM analysis of the anisotropy effects on the failure mechanism of the layered concretes' specimens with internal notches

  • Jinwei Fu;Vahab Sarfarazi;Hadi Haeri;Mohammad Fatehi Marji
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.659-670
    • /
    • 2024
  • The mechanical behaviour of layered concrete samples containing an internal crack was numerically studied by modelling the geo-mechanical specimens in the particle flow code in two dimensions (PFC2D). The numerical modelling software was calibrated with the experimental results of the Brazilian tensile strengths gained from the laboratory disc-type specimens. Then, the samples with the bedding layers and internal notch were numerically simulated with PFC2D under uniaxial compressive loading. In each specimen, the layers' thickness was 10 mm but the layer's inclination angle was changed to 0°, 30°, 60°, 90°, 120° and 150°. Of course, the layers'interfaces are considered to have very low strengths. The internal notch was kept at 3 cm in length however, its inclination angle was changed to 0°, 40°, 60° and 90°. Therefore, a total, of 24 numerical models were made to study the failure mechanism of the layered concrete samples. Considering these results, it has been concluded that the inclination angles of both internal crack and bedding layers affect the failure mechanism and uniaxial compressive strength of the concrete.

Effect of Zr Addition on the Mechanical Properties and MnS Morphology of Cr-Mo Plastic Mold Steel (Cr-Mo계 금형강의 기계적 성질과 MnS 형상 변화에 미치는 Zr첨가의 영향)

  • Kim, Nam-Kyu;Jeon, Ho-Sung;Lee, Oh-Yeon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.4
    • /
    • pp.191-197
    • /
    • 2010
  • Zr addition is known as effective method to improve the anisotropy of steel due to the elongated MnS inclusions which are observed in hot forged steels. The aim of this research is to investigate the effect of Zr addition on the mechanical properties and manganese sulphide morphology of 0.27%C-Cr-Mo plastic mold steel. The ingots were prepared by vacuum induction melting and forged to ${\Phi}35mm$ round bar. Forged bars were quenched and tempered at $560{\sim}640^{\circ}C$ for 1 hour. Jominy test, microstructual observation, tensile test and Charpy impact test were conducted. The morphology of MnS inclusions was changed by Zr addition. The shape of MnS inclusions was not so much lengthened and controlled not to be elongated by Zr inclusions which surround the MnS inclusions. Tensile strength and yield strength of the tempered steels were not nearly affected by the addition of Zr, but elongation and reduction of area were decreased. Especially, the toughness of Zr added steels was deteriorated with increasing of Zr content. From the results of this study, it is assumed that anisotropy of steels was improved by the addition of Zr. However, impact toughness of the steel was significantly decreased by the excessive Zr addition (over 0.066%).