DOI QR코드

DOI QR Code

DEM analysis of the anisotropy effects on the failure mechanism of the layered concretes' specimens with internal notches

  • Jinwei Fu (School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power) ;
  • Vahab Sarfarazi (Department of Mining Engineering, Hamedan University of Technology) ;
  • Hadi Haeri (Department of Mining Engineering, Higher Education Complex of Zarand, Shahid Bahonar University of Kerman) ;
  • Mohammad Fatehi Marji (Department of Mine Exploitation Engineering, Faculty of Mining and Metallurgy, Institute of Engineering, Yazd University)
  • Received : 2021.12.06
  • Accepted : 2023.11.03
  • Published : 2024.06.25

Abstract

The mechanical behaviour of layered concrete samples containing an internal crack was numerically studied by modelling the geo-mechanical specimens in the particle flow code in two dimensions (PFC2D). The numerical modelling software was calibrated with the experimental results of the Brazilian tensile strengths gained from the laboratory disc-type specimens. Then, the samples with the bedding layers and internal notch were numerically simulated with PFC2D under uniaxial compressive loading. In each specimen, the layers' thickness was 10 mm but the layer's inclination angle was changed to 0°, 30°, 60°, 90°, 120° and 150°. Of course, the layers'interfaces are considered to have very low strengths. The internal notch was kept at 3 cm in length however, its inclination angle was changed to 0°, 40°, 60° and 90°. Therefore, a total, of 24 numerical models were made to study the failure mechanism of the layered concrete samples. Considering these results, it has been concluded that the inclination angles of both internal crack and bedding layers affect the failure mechanism and uniaxial compressive strength of the concrete.

Keywords

Acknowledgement

This work was financially supported by National Natural Science Foundation of China (Grant No. 51608117) and High foreign country expert project in Henan province (Grant No.HNGD2022040).

References

  1. Akbas, S. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 66-78. https://doi.org/10.12989/sem.2016.59.3.579.
  2. Al-Harthi, A.A. (1998), "Effect of planar structures on the anisotropy of Ranyah sandstone", Saudi Arabia Eng. Geol., 50(1), 49e57. https://doi.org/10.1016/S0013-7952(97)00081-1.
  3. Ali, E., Wu, G., Zhao, Z. and Jiang, W. (2014), "Assessments of strength anisotropy and deformation behavior of banded amphibolite rocks", Geotech. Geol. Eng., 32(2), 429e38. https://doi.org/10.1007/s10706-013-9724-5.
  4. Bahaaddini, M., Hagan, P.C., Mitra, R. and Hebblewhite, B.K. (2014), "Scale effect on the shear behaviour of rock joints based on a numerical study", Eng. Geol., 181, 212-223. https://doi.org/10.1016/j.enggeo.2014.07.018.
  5. Chang, X. (2019), "Experimental study on rock-concrete joints under cyclically diametrical compression", Geomech. Eng., 17(6), 98-109. https://doi.org/10.1016/j.istruc.2022.09.007.
  6. Chang, X., Zhang, X., Qian, L.Z., Chen, S.H. and Yu, J. (2022), "Influence of bedding anisotropy on the dynamic fracture behavior of layered phyllite", Eng. Fract. Mech., 260, 108183. https://doi.org/10.1016/j.engfracmech.2021.108183.
  7. Dan, D.Q., Konietzky, H. and Herbst, M. (2013), "Brazilian tensile strength tests on some ani-sotropic rocks", Int. J. Rock Mech. Min. Sci., 58, 1-7. https://doi.org/10.1016/j.ijrmms.2012.08.010.
  8. Deshpande, V.M. and Chakraborty, T. (2023), "Experimental and numerical study on the dynamic behavior of a transversely isotropic rock", Eng. Geol., 314, 107016. https://doi.org/10.1016/j.enggeo.2023.107016.
  9. Gholami, R. and Rasouli, V. (2014), "Mechanical and elastic properties of transversely isotropic slate", Rock Mech. Rock Eng., 47, 1763-1773. https://doi.org/10.1007/s00603-013-0488-2.
  10. Golewski, G.L. (2018), "An analysis of fracture toughness in concrete with fly ash addition, considering all models of cracking", IOP Conf. Ser.: Mater. Sci. Eng., 416, 012029. https://doi.org/10.1088/1757-899X/416/1/012029.
  11. Golewski, G.L. (2021a), "Validation of the favorable quantity of fly ash in concrete and analysis of crack propagation and its length - Using the crack tip tracking (CTT) method - In the fracture toughness examinations under Mode II, through digital image correlation", Constr. Build. Mater., 296, 122362. https://doi.org/10.1016/j.conbuildmat.2021.122362.
  12. Golewski, G.L. (2021b), "Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack paths lengths with the use of a new crack tip tracking method", Measure., 181, 109632, https://doi.org/10.1016/j.measurement.2021.109632.
  13. Haeri, H., Sarfarazi, V. and Marji, M.F. (2020), "Numerical simulation of the effect of confining pressure and tunnel depth on the vertical settlement using particle flow code (with direct tensile strength calibration in PFC Modeling)", Smart Struct. Syst., 25(4), 433-446. https://doi.org/10.12989/sss.2020.25.4.433.
  14. Haeri, H., Sarfarazi, V., Marji, M.F., Yavari, M.D. and Zahedi-Khameneh, A. (2021), "Direct tensile strength measurement of granite by the universal tensile testing machine", Smart Struct. Syst., 27(4), 559-569. https://doi.org/10.12989/sss.2021.27.4.559.
  15. Jaeger, J.C. (1960), "Shear failure of anistropic rocks", Geol. Mag., 97(1), 65e72. https://doi.org/10.1017/S0016756800061100.
  16. Johansson, F. (2016). "Influence of scale and matedness on the peak shear strength of fresh, unweathered rock joints", Int. J. Rock Mech. Min. Sci., 82, 36-47. https://doi.org/10.1016/j.ijrmms.2015.11.010.
  17. Khanlari, G., Rafiei, B. and Abdilor, Y. (2015), "An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstones", Rock Mech. Rock Eng., 48, 843-852. https://doi.org/10.1007/s00603-014-0576-y.
  18. Kim, W.J., Lee, J.M., Kim, J.S. and Lee, C.J. (2012), "Measuring high speed crack propagation in concrete fracture test using mechanoluminescent material", Smart Struct. Syst., 10(6), 547-555. https://doi.org/10.12989/sss.2012.10.6.547.
  19. Li, L.C., Xia, Y.J., Huang, B., Zhang, L.Y., Li, M. and Li, A.S. (2016), "The behaviour of fracture growth in sedimentary rocks: A numerical study based on hydraulic fracturing pro-cesses", Energies, 9, 169-197. https://doi.org/10.3390/en9030169.
  20. Li, X.L. (2013), "Timodaz: A successful international cooperation project to investigate the thermal impact on the EDZ around a radioactive waste disposal in clay host rocks", J. Rock Mech. Geotech. Eng., 5, 231-242. https://doi.org/10.1016/j.jrmge.2013.05.003.
  21. Li, Y. and Zhou, H. (2018), "Numerical investigations on stability evaluation of a jointed rock slope during excavation using an optimized DDARF method", Geomech. Eng., 14(3), 232-243. http://doi.org/10.12989/gae.2018.14.3.271.
  22. Lisjak, A., Garitte, B., Grasselli, G., Muller, H.R. and Vietor, T. (2015), "The excavation of a circular tunnel in a bedded argillaceous rock (Opalinus Clay): short-term rock mass response and FDEM numerical analysis", Tunn. Undergr. Space Technol., 45, 227-248. https://doi.org/10.1016/j.tust.2014.09.014.
  23. Liu, C., Zandi, Y., Rahimi, A., Peng, Y., Ge, G., Khadimallah, M.A., Issakhov, A. and Yu, S.T. (2021), "Application of multi-hybrid metaheuristic algorithm on prediction of split-tensile strength of shear connectors", Smart Struct. Syst., 28(2), 167-180. https://doi.org/10.12989/sss.2021.28.2.167.
  24. Liu, K.D., Liu, Q.S., Zhu, Y.G. and Liu, B. (2013), "Experimental study of coal considering directivity effect of bedding plane under Brazilian splitting and uniaxial compression", Chin. J. Rock Mech. Eng., 32, 308-316.
  25. Liu, X., Liu, Y., Lu, Y. and Kou, M. (2020), "Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints", Struct. Eng. Mech., 74(3), 221-234. https://doi.org/10.12989/sem.2020.74.3.407.
  26. Ma, T., Wu, B., Fu, J., Zhang, Q. and Chen, P. (2017b), "Fracture pressure prediction for layered formations with anisotropic rock strengths", J. Nat. Gas Sci. Eng., 38, 485-503. https://doi.org/10.1016/j.jngse.2017.01.002.
  27. Ma, T., Zhang, Q.B., Chen, P., Yang, C. and Zhao, J. (2017a), "Fracture pressure model for inclined wells in layered formations with anisotropic rock strengths", J. Petrol. Sci. Eng., 149, 393-408. https://doi.org/10.1016/j.petrol.2016.10.050.
  28. Mohammad, A. (2016), "Statistical flexural toughness modeling of ultra-high performance Concrete using response surface method", Comput. Concrete, 17(4), 33-39. https://doi.org/10.12989/cac.2016.17.4.477.
  29. O zdemir, M.E. and Yaylac, M. (2023), "Research of the impact of material and flow properties on fluid-structure interaction in cage systems", 36(1), 31-40. https://doi.org/10.12989/was.2023.36.1.031.
  30. Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement", Struct. Eng. Mech., 52(4), 167-181. https://doi.org/10.1080/14680629.2014.908133.
  31. Pouragha, M., Eghbalian, M. and Wan, R. (2020), "Micromechanical correlation between elasticity and strength characteristics of anisotropic rocks", Int. J. Rock Mech. Min. Sci., 125, 104154. https://doi.org/10.1016/j.ijrmms.2019.104154.
  32. Shaowei, H., Aiqing, X., Xin, H. and Yangyang, Y. (2016), "Study on fracture characteristics of reinforced concrete wedge splitting tests", Comput. Concrete, 18(3), 337-354. https://doi.org/10.12989/cac.2016.18.3.33.
  33. Shen, B., Siren, T. and Rinne, M. (2015), "Modelling fracture propagation in anisotropic rock mass", Rock Mech. Rock. Eng., 48(3), 1067e81. https://doi.org/10.1007/s00603-014-0621-x.
  34. Shi, X., Yang, X., Meng, Y. and Li, G. (2016), "An anisotropic strength model for layered rocks considering planes of weakness", Rock Mech. Rock Eng., 49(9), 3783e92. https://doi.org/10.1007/s00603-016-0985-1.
  35. Shi, X., Zhao, Y., Yao, W., Gong, S. and Noraei, D.N. (2022b), "Dynamic tensile failure of layered sorptive rocks: Shale and coal", Eng. Fail. Anal., 138, 106346. https://doi.org/10.1016/j.engfailanal.2022.106346.
  36. Shi. X., Zhao. Y., Gong. S., Wang. W. and Yao. W. (2022a), "Co-effects of bedding planes and loading condition on Mode-I fracture toughness of anisotropic rocks", Theoret. Appl. Fract. Mech., 117, 103158. https://doi.org/10.1016/j.tafmec.2021.103158.
  37. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739.
  38. Szostak, B. and Golewski, G.L. (2020), "Improvement of strength parameters of cement matrix with the addition of siliceous fly ash by using nanometric C-S-H seeds", Energies, 13, 6734. https://doi.org/10.3390/en13246734.
  39. Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 47, 313-322. https://doi.org/10.1016/j.ijrmms.2010.01.001.
  40. Vervoort, A., Min, K.B., Konietzky, H., Cho, J.W., Debecker, B., Dinh, Q.D., Fruhwirt, T. and Tavallali, A. (2014), "Failure of transversely isotropic rock under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 70, 343-352. https://doi.org/10.1016/j.ijrmms.2014.04.006.
  41. Wang, J., Xie, L., Xie, H. and Ren, L. (2016), "Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests", J. Nat. Gas Sci. Eng., 36, 1120e9. https://doi.org/10.1016/j.jngse.2016.03.046.
  42. Wang, P., Ren, F., Miao, S., Cai, M. and Yang, T. (2017), "Evaluation of the anisotropy and directionality of a jointed rock mass under numerical direct shear tests", Eng. Geol., 225, 29-41. https://doi.org/10.1016/j.enggeo.2017.03.004.
  43. Wang, P.T., Ren, F.H., Miao, S.J., Cai, M.F. and Yang, T.H. (2017), "Evaluation of the aniso-tropy and directionality of a jointed rock mass under numerical direct shear tests", Eng. Geol., 225, 29-41. https://doi.org/10.1016/j.enggeo.2017.03.004.
  44. Wang, X., Yuan, W., Yatao, Y. and Zhang, X. (2020), "Scale effect of mechanical properties of jointed rock mass: A numerical study based on particle flow code", Geomech. Eng., 21(3), 65-81. https://doi.org/10.12989/gae.2020.21.3.259.
  45. Wasantha, P.L.P., Ranjith, P.G., Zhang, Q.B. and Xu, T. (2015), "Do joint geometrical properties influence the fracturing behaviour of jointed rock? An investigation through joint orientation", J. Geomech. Geophys. Geol. Energy Geol. Res., 1, 3-14. https://doi.org/10.1007/s40948-015-0001-3.
  46. Wu, N. and Liang, Z. (2019), "Effect of confining stress on representative elementary volume of jointed rock masses", Geomech. Eng., 18(6), 22-37. https://doi.org/10.12989/gae.2019.18.6.627.
  47. Wu, W., Wang, G.B. and Mao, H.J. (2010), "Investigation of porosity effect on mechanical strength characteristics of dolostone", Rock Soil Mech., 31, 3709-3714. https://doi.org/10.3390/min10060574.
  48. Xia, K., Yao, W. and Wu, B. (2017), "Dynamic rock tensile strengths of Laurentian granite: Experimental observation and micromechanical model", J. Rock Mech. Geotech. Eng., 9, 116-124. https://doi.org/10.1016/j.jrmge.2016.08.007.
  49. Xu, T., Ranjith, P.G., Wasantha, P.L.P., Zhao, J., Tang, C.A. and Zhu, W.C. (2013), "Influence of the geometry of partially-spanning joints on mechanical properties of rock in uniaxial compression", Eng. Geol., 167, 134-147. https://doi.org/10.1016/j.enggeo.2013.10.011.
  50. Yang, T.H., Wang, P.T., Xu, T., Yu, Q.L., Zhang, P.H., Shi, W.H. and Hu, G.J. (2015), "Anisotropic characteristics of fractured rock mass and a case study in Shirengou Metal Mine in China", Tunn. Undergr. Space Technol., 48, 129-139. https://doi.org/10.1016/j.tust.2015.03.005.
  51. Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
  52. Yaylaci, E.U., Oner, E., Yaylaci, M., Ozdemir, M.E., Abushattal, A. and Birinci, A. (2022), "Application of artificial neural networks in the analysis of the continuous contact problem", Struct. Eng. Mech., 84(1), 35-48. https://doi.org/10.12989/sem.2022.84.1.035.
  53. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez H., Sekban D.M. and Birinci, A. (2022a), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Arch. Appl. Mech., 92, 1953-1971. https://doi.org/10.1007/s00419-022-02159-5.
  54. Yaylaci, M., Sabano, B.S., Ozdemir, M.E. and Birinci, A. (2022b), "Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.
  55. Yaylaci, M., Yaylaci, E.U., Ozdemir, M.E., Ozturk, S. and Sesli, H. (2023), "Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods", Steel Compos. Struct., 46(4), 565-575. https://doi.org/10.12989/scs.2023.46.4.565.
  56. Yin, P. and Yang, S. (2020), "Experimental study on strength and failure behavior of transversely isotropic rock-like material under uniaxial compression", Geomech. Geophys. Geo-Energy GeoResour., 6(3), 44. https://doi.org/10.1007/s40948-020-00168-8.
  57. Yu, L., Weetjens, E., Sillen, X., Vietor, T., Li, X., Delage, P., Labiouse, V. and Charlier, R. (2014), "Consequences of the thermal transient on the evolution of the damaged zone around a repository for heat-emitting high-level radioactive waste in a clay formation: A performance assessment perspective", Rock Mech. Rock Eng., 47, 3-19. https://doi.org/10.1007/s00603-013-0409-4.
  58. Yuan, R. and Shen, B. (2017), "Numerical modelling of the contact condition of a Brazilian disk test and its influence on the tensile strength of rock", Int. J. Rock Mech. Min. Sci., 93, 54-65. https://doi.org/10.1016/j.ijrmms.2017.01.010.
  59. Zhang, S.W., Shou, K.J., Xian, X.F., Zhou, J.P. and Liu, G.J. (2018), "Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests", Tunn. Undergr. Space Technol., 71, 298-308. https://doi.org/10.1016/j.tust.2017.08.031.
  60. Zhao, W. and Huang, R. (2015), "Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation", Geomech. Eng., 8(6), 143-154. http://dx.doi.org/10.12989/gae.2015.8.6.757.
  61. Zheng, Y., He, R., Huang, L., Bai, Y., Wang, C., Chen, W. and Wang, W. (2022), "Exploring the effect of engineering parameters on the penetration of hydraulic fractures through bedding planes in different propagation regimes", Comput. Geotech., 146, 104736. https://doi.org/10.1016/j.compgeo.2022.104736.
  62. Zhou, X.P. and Wang, Y. (2016), "Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics", Int. J. Rock Mech. Min. Sci., 89, 235-249. https://doi.org/10.1016/j.ijrmms.2016.09.010.
  63. Zhou, X.P., Bi, J. and Qian, Q. (2015), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws", Rock Mech. Rock Eng., 48(3), 1097-1114. https://doi.org/10.1007/s00603-014-0627-4.