• Title/Summary/Keyword: anisotropy function

Search Result 189, Processing Time 0.025 seconds

Evolution of Orthotropic Anisotropy by Simple Shear Deformation (전단변형에 의한 직교이방성의 변화)

  • 김권희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.413-423
    • /
    • 1991
  • Multiaxial loading by combinations of tension-torsion-internal pressure have been applied to the thins-walled tubular specimens prepared from cold drawn tubes of SAE 1020 steel. Prior to the multiaxial loading, each specimen has been twisted to different shear strains. Uniaxial tensile yield stresses measured at different angles to the tube axis clearly show that the initial orthotropic symmetry is maintained during twisting. The orthotropy axes are observed to rotate with shear strains. The plane stress yield locus measured for each twisted specimens show that yield surface shape does not remain similar during twisting and thus anisotropic work hardening is not a function of only plastic work.

Effect of Strain Rate on the Anisotropic Deformation Behavior of Advanced High Strength Steel Sheets (변형률속도에 따른 고강도 강판의 이방성 변화에 관한 연구)

  • Huh, J.;Huh, H.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.595-600
    • /
    • 2011
  • This paper investigates the effect of strain rate on the anisotropic deformation behavior of advanced high strength steel sheets. Uniaxial tensile tests were carried out on TRIP590 and DP780 steel sheets at strain rates ranging from 0.001/sec to 100/sec to determine yield stresses and r-values at various loading angles from the reference rolling direction. R-values were determined by the digital image correlation technique. Hill48 and Yld2000-2d yield functions were tested for their capability to describe the plastic deformation anisotropy of the materials. Initial yield loci were constructed using the Yld2000-2d yield function, which adequately described the anisotropic behavior of the materials. The shape of the initial yield loci was found to change with different strain rate, and the anisotropic behavior decreased with increasing strain rate.

Permeability of CoZrNb film with thickness (CoZrNb막의 두께에 따른 투자율의 변화)

  • Hoe, J.;Kim, Y.H.;Shin, K.H.;Sa-Gong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.443-446
    • /
    • 2001
  • MI(Magneto-Impedance) sensor which is made by thin films has significantly high detecting sensitivity in weak magnetic field. It also has a merit to be able to build in low power system. Its structure is simple, which makes it easier to prepare a miniature. In this study, its magnetic permeability and anisotropy field(H$\sub$k/) as a function of a thickness of sputtered amorphous CoZrNb thin film with high saturation magnetostriction and excellent soft magnetic property are investigated. In order to make a uniaxial anisotropy, thin film was subjected to post annealing with a static magnetic field with 1KOe intensity at 250, 300, and 320$^{\circ}C$ for 2 hour. Anisotropy field(H$\sub$k/)of thin film is measured by using MH loop tracer. Its magnetic permeability of thin film is measured over the frequency range from 1 MHz to 750MHz. It has shown that the magnetic permeability of amorphous CoZrNb thin film is decreased due to the skin effect with increasing a thickness of CoZrNb thin film, and hence its driving frequency is lowered.

  • PDF

Characteristics of Shear Wave Velocity as Stress-Induced and Inherent Anisoptopies (응력유도 및 고유 이방성에 따른 전단파 속도 특성)

  • Lee, Chang-Ho;Lee, Jong-Sub;Cho, Tae-Hyeon;Lee, Jeong-Hark;Kim, Sang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.137-146
    • /
    • 2006
  • Shear wave velocity of uncemented soil can be expressed as the function of effective stresses when capillary phenomenons are negligible. However, the terms of effective stresses are divided to the direction of wave propagation and polarization because stress states are generally anisotropy. The shear wave velocities are affected by parameters and exponents that are experimentally determined. The exponents are controlled contact effects of particulate materials(sizes, shapes, and structures of particles) and the parameters are changed contact behaviors between particles, material properties of particles, and type of packing(i.e., void ratio and coordination number). In this study, consolidation tests are performed by using clay, mica and sand specimens. Shear wave velocities are measured during consolidation tests to investigate the stress-induced and inherent anisotropies through bender elements. Results show the shear wave velocities depends on the stress-induced anisotropy for round particles. Furthermore the shear wave velocity is dependent on particle alignment under the constant effective stress. This study suggests that the shear wave velocity and the shear modulus should be carefully calculated and used for the design and construction of geotechnical structures.

  • PDF

Radiation Pattern in Rectangular Microstrip Patch Antenna with Anisotropy Substrates and Superstrate (이방성 매질의 기판과 덮개층을 갖는 마이크로스트립 패치 안테나의 방사패턴)

  • Yoon, Joong-Han;Lee, Hwa-Choon;Kwak, Kyung-Sup
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.32-42
    • /
    • 2003
  • In this paper, radiation pattern of rectangular microstrip patch antenna with anisotropy substrates and superstrate is studied by using a rigorous full-wave approach and a moment method calculation. Dyadic Green's function is derived for selected anisotropy material by constitutive relation. From these results, integral equations of electric fields are formulated. The electric field integral equations are discretized into the matrix form by applying Galerkin's moment method and then the current coefficients are obtained.. After solving the current coefficients, the far-zone electric field in spherical coordinates can be obtained by using the stationary phase method. To verify the validity of numerical result, we compare our result with existing one and get a good agreement between them. From the numerical results, the radiation patterns for variation of uniaxial superstrate thickness, anisotropy ratio of substrate and superstrate layer are presented and analyzed.

  • PDF

Brillouin Light Scattering Study of Magnetic Anisotropy in GaAs/Fe/Au System (Brillouin Light Scattering을 이용한 GaAs/Fe/Au 구조의 자기이방성)

  • Ha, Seung-Seok;You, Chun-Yeol;Lee, Suk-Mock;Ohta, Kenta;Nozaki, Takayuk;Suzuki, Yoshishige;Roy, W. Van
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.147-153
    • /
    • 2008
  • It has been well-known that the Fe/GaAs heterostructure has a small lattice mismatch of 1.4% between Fe and GaAs, and the Fe layer is grown epitaxially on the the GaAs substrate. There are rich physics are observed in the GaAs/Fe interface, and the spininjection is actively studied due to its potential applications for spintronics devices. We fabricated Fe wedge layer in the thickness range $0{\sim}3.4$ nm on the GaAs(100) surface with 5-nm thick Au capping layer. The magnetic anisotropy of the Fe/GaAs system was investigated by employing Brillouin light scattering(BLS) measurements in this study. The spin wave excitation of Fe layer was studied as the function of intensity and the in-plane angle of external magnetic field, and thickness of Fe layer. Also these various dependences were analyzed with analytic expression of spin wave surface mode in order to determine the magnetic anisotropies. It has been found that the GaAs/Fe/Au system has additional uniaxial magnetic anisotropy, while the bulk Fe has biaxial anisotropy. The uniaxial anisotropy shows increasing dependency respected to decreasing thickness of Fe layer while biaxial anisotropy is reduced with Fe film thickness. This result allows the analysis that the uniaxial anisotropy is originated from interface between GaAs surface and Fe layer.

Anisotropy in a Few mm Regions from an Ir192 High Dose Rate Source Measured with a GafChromic Film in Acrylic Phantom (아크릴 팬톰에서 GafChromic 필름을 이용한 고선량률 근접 치료용 Ir-192 선원의 근접 거리에서 비등방성 측정)

  • Huh, Hyun-Do;Kim, Seong-Hoon;Park, Jin-Ho;Cho, Byung-Chul;Shin, Dong-Oh;Soo il Kwon;Chun, Ha-Chung;John J K Loh;Kim, Woo-Chul
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Radiochromic film has several advantages; high spatial resolution, relatively low spectral sensitivity, near tissue equivalence and requires no special development procedure. The object of this study was to measure the anisotropy of an Ir-192 source (microSelectron manufactured by Nucletron) in a few mm regions from the source, using the GafChromic film. The GafChromic film was calibrated in the range of 0∼105 Gy, using a 4 MV photon beam, and the anisotropy function measured in an acrylic phantom using the GafChroimic film. The data obtained gave agreement to within 4.4% of the Monte Calro calculation, by J. F. Williamson, at a radial distance of 2.5 mm with polar angles of 50 to 130$^{\circ}$, while a maximum deviation of 17.6% was observed at angles near 140$^{\circ}$and agreement within 3.7% at a radial distance of 5 mm at polar angles between 35 to 150$^{\circ}$ and a maximum deviation of 7.6% was observed at angles near 30$^{\circ}$. A GafChromic film can be used as a more efficient detector for measuring the anisotropy of an HDR $^{192}$ Ir source at close distances than any other detector.

  • PDF

Estimation of Creep Cavities Using Neural Network and Progressive Damage Modeling (신경회로망과 점진적 손상 모델링을 이용한 크리프 기공의 평가)

  • Jo, Seok-Je;Jeong, Hyeon-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.455-463
    • /
    • 2000
  • In order to develop nondestructive techniques for the quantitative estimation of creep damage a series of crept copper samples were prepared and their ultrasonic velocities were measured. Velocities measured in three directions with respect to the loading axis decreased nonlinearly and their anisotropy increased as a function of creep-induced porosity. A progressive damage model was described to explain the void-velocity relationship, including the anisotropy. The comparison of modeling study showed that the creep voids evolved from sphere toward flat oblate spheroid with its minor axis aligned along the stress direction. This model allowed us to determine the average aspect ratio of voids for a given porosity content. A novel technique, the back propagation neural network (BPNN), was applied for estimating the porosity content due to the creep damage. The measured velocities were used to train the BP classifier, and its accuracy was tested on another set of creep samples containing 0 to 0.7 % void content. When the void aspect ratio was used as input parameter together with the velocity data, the NN algorithm provided much better estimation of void content.

Fabrication and Properties of MI Sensor Device using CoZrNb Films (CoZrNb막을 이용한 MI센서 소자의 제작 및 특성)

  • Hur, J.;Kim, Y.H.;Shin, K.H.;Sa-Gong, G.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • Magneto-Impedance(MI) sensor is a highly sensitive sensor, which was able to detect a weak geomagnetic field. It also has a merit to be able to build in the low power system. In this study, their magnetic permeability and anisotropy field(H$\sub$k/) as a function of some different thickness of sputtered amorphous CoZrNb films with zero-magnetostriction and soft magnetic property are investigated. In order to make a uniaxial anisotropy, film was subjected to the post annealing in a static magnetic field with 1KOe intensity at 250, 300, and 320$^{\circ}C$ respectively for 2 hours. Magnetic properties of films are measured by using a M-H loop tracer. Magnetic permeability of a film is measured over the frequency range from 1 ㎒ to 750㎒. By thickening a CoZrNb film relatively, magnetic permeability and impedance are examine to design the. MI sensor which drives at 50㎒, and thereof fabricated the MI sensor which drives at the 50㎒.