DOI QR코드

DOI QR Code

Brillouin Light Scattering Study of Magnetic Anisotropy in GaAs/Fe/Au System

Brillouin Light Scattering을 이용한 GaAs/Fe/Au 구조의 자기이방성

  • 하승석 (인하대학교 물리학과) ;
  • 유천열 (인하대학교 물리학과) ;
  • 이석목 (인하대학교 물리학과) ;
  • ;
  • ;
  • ;
  • Published : 2008.08.31

Abstract

It has been well-known that the Fe/GaAs heterostructure has a small lattice mismatch of 1.4% between Fe and GaAs, and the Fe layer is grown epitaxially on the the GaAs substrate. There are rich physics are observed in the GaAs/Fe interface, and the spininjection is actively studied due to its potential applications for spintronics devices. We fabricated Fe wedge layer in the thickness range $0{\sim}3.4$ nm on the GaAs(100) surface with 5-nm thick Au capping layer. The magnetic anisotropy of the Fe/GaAs system was investigated by employing Brillouin light scattering(BLS) measurements in this study. The spin wave excitation of Fe layer was studied as the function of intensity and the in-plane angle of external magnetic field, and thickness of Fe layer. Also these various dependences were analyzed with analytic expression of spin wave surface mode in order to determine the magnetic anisotropies. It has been found that the GaAs/Fe/Au system has additional uniaxial magnetic anisotropy, while the bulk Fe has biaxial anisotropy. The uniaxial anisotropy shows increasing dependency respected to decreasing thickness of Fe layer while biaxial anisotropy is reduced with Fe film thickness. This result allows the analysis that the uniaxial anisotropy is originated from interface between GaAs surface and Fe layer.

GaAs 기판위에 Fe을 성장시킨 이종 접합 구조는 두 물질의 lattice mismatch가 1.4 % 정도로 작기 때문에 결정 상태가 매우 좋은 Fe층을 성장시킬 수 있는 것으로 알려져있다. GaAs/Fe의 계면에서는 많은 흥미로운 현상이 관찰되며, 또한 스핀주입을 이용한 산업적 응용 면으로 가치가 있는 구조로서 활발한 연구가 진행되어 왔다. 본 연구에서는 GaAs(100) 표면에 Fe층을 쐐기모양으로 두께를 $0{\sim}3.4$ nm로 바꾸어 성장시키고 5 nm 두께의 Au층을 추가 증착시킨 시료를 Brillouin light scattering(BLS) 측정방법을 이용, 자기이방성에 대해 조사하였다. Fe층 두께를 변화시켜가며 자화 용이축과 곤란축 방향으로 외부자기장의 세기에 대한 스핀파 들뜸의 의존도와 외부자기장의 방위각에 대한 스핀파 들뜸의 의존도를 조사하였다. 측정된 결과의 정량적 분석을 통해 Fe층의 두께에 따라 일축 자기이방성 상수와 이축 자기이방성 상수를 구하였다. GaAs층 위에서 성장된 Fe층의 자기이방성은 GaAs 기판에 영향을 받아 Fe층의 두께가 얇을수록 큰 일축 자기이방성을 가지고 박막의 두께가 증가함에 따라서 Fe 본래의 이축 이방성의 크기가 증가함을 확인하였다.

Keywords

References

  1. J. F. Gregg, I. Petej, E. Jouguelet, and C Dennis, J. Phys. D: Appl. Phys., 35, R121 (2002) https://doi.org/10.1088/0022-3727/35/18/201
  2. S. Datta and B. Das, Appl. Phys. Lett., 56, 665 (1990) https://doi.org/10.1063/1.102730
  3. G. A. Prinz, Phys. Today, 48, 58 (1995)
  4. F. J. Jedema, A. T. Filip and B. J. van Wees, Nature, 410, 345 (2001) https://doi.org/10.1038/35066533
  5. G. Wastlbauer and J. A. C. Bland, Adv. Phys., 54, 137 (2005) https://doi.org/10.1080/00018730500112000
  6. F. Bensch, R. Moosbuhler, and G. Bayreüther, J. Appl. Phys., 91, 8754 (2002) https://doi.org/10.1063/1.1456391
  7. A. Filipe, A. Schuhl, and P. Galtier, Appl. Phys. Lett., 70, 129 (1996)
  8. D. Sander, Rep. Prog. Phys., 62, 809 (1999) https://doi.org/10.1088/0034-4885/62/5/204
  9. S. McPhail, et al., Phys. Rev. B, 67, 024409 (2003) https://doi.org/10.1103/PhysRevB.67.024409
  10. M. Brockmann, et al., J. Magn. Magn. Mater., 198-199, 384 (1999) https://doi.org/10.1016/S0304-8853(98)01142-1
  11. M. Gester, et al., J. Appl. Phys., 80, 347 (1996) https://doi.org/10.1063/1.362788
  12. Y. B. Xu, et al., Phys. Rev. B, 58, 890 (1998) https://doi.org/10.1103/PhysRevB.58.890
  13. T. L. Monchesky, B. Heinrich, R. Urban, and K. Myrtle, Phys. Rev. B, 60, 10242 (1999) https://doi.org/10.1103/PhysRevB.60.10242
  14. N. A. Morley, et al., J. Magn. Magn. Mater., 300, 436 (2006) https://doi.org/10.1016/j.jmmm.2005.05.034
  15. N. A. Morley, et al., J. Phys: Condens. Matter, 17, 1201 (2005) https://doi.org/10.1088/0953-8984/17/7/012
  16. N. Lei, et al., Thin Solid Films, 515, 7290 (2007) https://doi.org/10.1016/j.tsf.2007.03.009
  17. R. J. Hicken, et al., J. Magn. Magn. Mater., 145, 278 (1995) https://doi.org/10.1016/0304-8853(94)01626-7
  18. A. Yoshihara, et al., J. Magn. Soc. Japan, 23, 161 (1999) https://doi.org/10.3379/jmsjmag.23.161
  19. N. Madami, et al., Phys. Rev. B, 69, 144408 (2004) https://doi.org/10.1103/PhysRevB.69.144408
  20. K. H. Han, Y. P. Lee, J. G. Kim, and S. Lee, J. Korean Phys. Soc., 46, S146 (2005)
  21. J. M. Shaw, S. Lee, and C. M. Falco, Phys. Rev. B, 73, 094417 (2006) https://doi.org/10.1103/PhysRevB.73.094417
  22. S. Tacchi, et al., Surf. Sci., 601, 4311 (2007) https://doi.org/10.1016/j.susc.2007.04.235
  23. K. H. Han, J. H. Cho, and S. Lee, J. of Magnetics, 12, 27 (2007) https://doi.org/10.4283/JMAG.2007.12.1.027
  24. D. K. Biegelsen, R. D. Bringans, J. E. Northrup, and L.-E. Swartz, Phys. Rev. B, 41 5701 (1990) https://doi.org/10.1103/PhysRevB.41.5701
  25. G. Gubbiotti, et al., Phys. Rev. B, 60, 17150 (1999) https://doi.org/10.1103/PhysRevB.60.17150
  26. G. Gubbiotti, et al., Phys. Rev. B, 56, 11073 (1997) https://doi.org/10.1103/PhysRevB.56.11073
  27. G. Carlotti and G. Gubbiotti, J. Phys: Condens. Matter, 14, 8199 (2002) https://doi.org/10.1088/0953-8984/14/35/303
  28. B. Hillebrands, Light Scattering in Solids vol 7, edited by M Cardona and G Guntherodt (Berlin: Springer) (2000)
  29. B. Heinrich, Z. F. Celinski, J. F. Cochran, A. S. Arrott, and K. Myrtle, Phys. Rev. B, 44 530 (1990)