• Title/Summary/Keyword: anisotropic random model

Search Result 12, Processing Time 0.02 seconds

Probabilistic bearing capacity of strip footing on reinforced anisotropic soil slope

  • Halder, Koushik;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.15-30
    • /
    • 2020
  • The probabilistic bearing capacity of a strip footing placed on the edge of a purely cohesive reinforced soil slope is computed by combining lower bound finite element limit analysis technique with random field method and Monte Carlo simulation technique. To simulate actual field condition, anisotropic random field model of undrained soil shear strength is generated by using the Cholesky-Decomposition method. With the inclusion of a single layer of reinforcement, dimensionless bearing capacity factor, N always increases in both deterministic and probabilistic analysis. As the coefficient of variation of the undrained soil shear strength increases, the mean N value in both unreinforced and reinforced slopes reduces for particular values of correlation length in horizontal and vertical directions. For smaller correlation lengths, the mean N value of unreinforced and reinforced slopes is always lower than the deterministic solutions. However, with the increment in the correlation lengths, this difference reduces and at a higher correlation length, both the deterministic and probabilistic mean values become almost equal. Providing reinforcement under footing subjected to eccentric load is found to be an efficient solution. However, both the deterministic and probabilistic bearing capacity for unreinforced and reinforced slopes reduces with the consideration of loading eccentricity.

Image Classification Using Modified Anisotropic Diffusion Restoration (수정 이방성 분산 복원을 이용한 영상 분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.479-490
    • /
    • 2003
  • This study proposed a modified anisotropic diffusion restoration for image classification. The anisotropic diffusion restoration uses a probabilistic model based on Markov random field, which represents geographical connectedness existing in many remotely sensed images, and restores them through an iterative diffusion processing. In every iteration, the bonding-strength coefficient associated with the spatial connectedness is adaptively estimated as a function of brightness gradient. The gradient function involves a constant called "temperature", which determines the amount of discontinuity and is continuously decreased in the iterations. In this study, the proposed method has been extensively evaluated using simulated images that were generated from various patterns. These patterns represent the types of natural and artificial land-use. The simulated images were restored by the modified anisotropic diffusion technique, and then classified by a multistage hierarchical clustering classification. The classification results were compared to them of the non-restored simulation images. The restoration with an appropriate temperature considerably reduces error in classification, especially for noisy images. This study made experiments on the satellite images remotely sensed on the Korean peninsula. The experimental results show that the proposed approach is also very effective on image classification in remote sensing.

Improvement in Image Classification by GRF-based Anisotropic Diffusion Restoration (GRF기반이방성 분산 복원에 의한 분류 결과 향상)

  • 이상훈
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.523-528
    • /
    • 2004
  • This study proposed an anisotropic diffusion restoration fer image classification. The anisotropic diffusion restoration uses a probabilistic model based on Markov random field, which represents geographical connectedness existing in many remotely sensed images, and restores them through an iterative diffusion processing. In every iteration, the bonding-strength coefficient associated with the spatial connectedness is adaptively estimated as a function of brightness gradient. This study made experiments on the satellite images remotely sensed on the Korean peninsula. The experimental results show that the proposed approach is also very effective on image classification in remote sensing.

  • PDF

Prediction of forming limits for anisotropic sheet metals with ellipsoidal voids (타원체 보이드를 갖는 이방성 판재의 성형한계 예측)

  • Son, H.S.;Kim, J.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.254-257
    • /
    • 2003
  • The modified yield function of Gologanu-Leblond-Devaux in conjunction with the Barlat and Lian's yield criterion is studied to clarify the plastic deformation characteristic of voided anisotropic sheet metals. The void growth of an anisotropic sheet under biaxial tensile loading and damage effect of void growth on forming limits of sheet metals are investigated. Also, the shape parameter defining non-spherical(prolate ellipsoidal) voids with initially random orientations is introduced in M-K model. The predicted forming limits are compared with the published experimental data.

  • PDF

A Probabilistic Analysis of Liquefaction Potential and Pore Water Pressure Build up due to Earthquake (지진하중에 의한 액화의 가능성과 간극수압의 발생에 관한 확률론적 연구)

  • Kim, Young-Su;Lee, Song;Cho, Woo-Chul
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.31-44
    • /
    • 1992
  • The probabilistic and statistical model is used to estimate the probability of liquefaction potential and pore water pressure build up due to earthquake in fully saturated sand deposit for each case of being structure(anisotropic) or not(isotropic). To execute this paper, dynamic shear strength parameters to show the relationship between shear strength and cyclic loading under isotropic or anisotropic condition in saturated sand deposit are presented. Using these parameters, the program which Predicts Pore water Pressure build up due to earthquake is developed. Using the 3-dimensional Random Field Model considering uncertainty of resistance and strength parameter, the program which computes the probability of liquefaction potential is developed. The developed program is applied to a case study, and then the result shows that the probability of liquefaction in isotropic condition is higher than in anisotropic condition. The ratio of pore water pressure tends to decrease as Kc increases.

  • PDF

A thermal microwave emission model for row-structured vegetation (이방성 물질의 마이크로파대역 열 발산 모델)

  • Eom, Hyo J.
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.2
    • /
    • pp.40-45
    • /
    • 1992
  • A simple emission model applicable for low scattering (scattering << absorption) anisotropic layer is developed and applied to the interpretation of measurements of microwave emission from row crops. The vegetation layer of row crops is modeled as a random slab embedded with small spheroid with major axis aligend paralel to the crop-row direction. The total emission is given in a simple algebraic form based on the zero-order radiative transfer theory. The single scattering albedo for spheroid and its polarimetric phase function are presented. The effects of layer azimuthal dependence on emission are accounted for by using an anisotropic albedo in the zero-order transfer theory. The developed emission theory favorably compares with the brightness temperature measured over soybeans canopy.

  • PDF

Cosmic Distances Probed Using The BAO Ring

  • Sabiu, Cristiano G.;Song, Yong-Seon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2016
  • The cosmic distance can be precisely determined using a 'standard ruler' imprinted by primordial baryon acoustic oscillation (hereafter BAO) in the early Universe. The BAO at the targeted epoch is observed by analyzing galaxy clustering in redshift space (hereafter RSD) of which theoretical formulation is not yet fully understood, and thus makes this methodology unsatisfactory. The BAO analysis through full RSD modeling is contaminated by the systematic uncertainty due to a non--linear smearing effect such as non-linear corrections and uncertainty caused by random viral velocity of galaxies. However, BAO can be probed independently of RSD contamination using the BAO peak positions located in the 2D anisotropic correlation function. A new methodology is presented to measure peak positions, to test whether it is also contaminated by the same systematics in RSD, and to provide the radial and transverse cosmic distances determined by the 2D BAO peak positions. We find that in our model independent anisotropic clustering analysis we can obtain about 2% and 5% constraints on $D_A$ and $H^{-1}$ respectively with current BOSS data which is competitive with other analysis.

  • PDF

Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time

  • Wagner, Manfred H.;Rolon-Garrido, Victor H.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.203-211
    • /
    • 2009
  • In flows with deformation rates larger than the inverse Rouse time of the polymer chain, chains are stretched and their confining tubes become increasingly anisotropic. The pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic and limit chain stretch. In the Molecular Stress Function (MSF) model, chain stretch is balanced by an interchain pressure term, which is inverse proportional to the $3^{rd}$ power of the tube diameter and is characterized by a tube diameter relaxation time. We show that the tube diameter relaxation time is equal to 3 times the Rouse time in the limit of small chain stretch. At larger deformations, we argue that chain stretch is balanced by two restoring tensions with weights of 1/3 in the longitudinal direction of the tube (due to a linear spring force) and 2/3 in the lateral direction (due to the nonlinear interchain pressure), both of which are characterized by the Rouse time. This approach is shown to be in quantitative agreement with transient and steady-state elongational viscosity data of two monodisperse polystyrene melts without using any nonlinear parameter, i.e. solely based on the linear-viscoelastic characterization of the melts. The same approach is extended to model experimental data of four styrene-butadiene random copolymer melts in shear flow. Thus for monodisperse linear polymer melts, for the first time a constitutive equation is presented which allows quantitative modeling of nonlinear extension and shear rheology on the basis of linear-viscoelastic data alone.

Modeling of the Elasto-plastic Deformation Behavior of Two-Dimensional Anisotropic Foam under Compressive Loads using Voronoi Cells (보로노이 셀을 이용한 2 원 비등방성 폼 구조 모델링 및 탄소성 압축변형 해석)

  • Han, Won-Hee;Choi, Byoung-Ho;Kim, Il-Hyun;Lee, Jeong-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.785-792
    • /
    • 2012
  • Foam structure is usually hard to model due to the complexity of the geometry of cells. So, many simplified models to represent complicated foam structures have been proposed, but most of them are not actually describe the random feature of the cell structure well. So, in this study, two dimensional isotropic and anisotropic closed cell structures of the foam were modeled using the concept of Voronoi cells. The elasto-plastic deformation behavior under compressive loads was investigated by finitie element analysis, and the results were compared with ideal honeycomb structure. In addition, the effect of anisotropy of Voronoi cell structures of the foam on Young's modulus and yield stress under compressive loads was studied.

Numerical modelling of the pull-out response of inclined hooked steel fibres

  • Georgiadi-Stefanidi, Kyriaki;Panagouli, Olympia;Kapatsina, Alexandra
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.127-143
    • /
    • 2015
  • Steel fibre reinforced concrete (SFRC) is an anisotropic material due to the random orientation of the fibres within the cement matrix. Fibres under different inclination angles provide different strength contribution of a given crack width. For that the pull-out response of inclined fibres is of great importance to understand SFRC behaviour, particularly in the case of fibres with hooked ends, which are the most widely used. The paper focuses on the numerical modelling of the pull-out response of this kind of fibres from high-strength cementitious matrix in order to study the effects of different inclination angles of the fibres to the load-displacement pull-out curves. The pull-out of the fibres is studied by means of accurate three-dimensional finite element models, which take into account the nonlinearities that are present in the physical model, such as the nonlinear bonding between the fibre and the matrix in the early stages of the loading, the unilateral contact between the fibre and the matrix, the friction at the contact areas, the plastification of the steel fibre and the plastification and cracking of the cementitious matrix. The bonding properties of the fibre-matrix interface considered in the numerical model are based on experimental results of pull-out tests on straight fibres.