• Title/Summary/Keyword: anisotropic hydraulic conductivity

Search Result 12, Processing Time 0.019 seconds

A Study on the Effective Hydraulic Conductivity of an Anisotropic Porous Medium

  • Seong, Kwanjae
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.959-965
    • /
    • 2002
  • Effective hydraulic conductivity of a statistically anisotropic heterogeneous medium is obtained for steady two-dimensional flows employing stochastic analysis. Flow equations are solved up to second order and the effective conductivity is obtained in a semi-analytic form depending only on the spatial correlation function and the anisotropy ratio of the hydraulic conductivity field, hence becoming a true intrinsic property independent of the flow field. Results are obtained using a statistically anisotropic Gaussian correlation function where the anisotropy is defined as the ratio of integral scales normal and parallel to the mean flow direction. Second order results indicate that the effective conductivity of an anisotropic medium is greater than that of an isotropic one when the anisotropy ratio is less than one and vice versa. It is also found that the effective conductivity has upper and lower bounds of the arithmetic and the harmonic mean conductivities.

하천 바닥 퇴적층의 투수성시험과 누수계수 추정

  • Ha Gyu-Cheol;Go Dong-Chan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.371-374
    • /
    • 2006
  • To quantify the hydraulic connection between river and aquifer, riverbed leakance values are required to be estimated. Silt, clay, and organic materials are often deposited in rivers resulting in the streambed having a lower hydraulic conductivity than the underlying alluvial aquifer The riverbed hydraulic conductivities are measured through vertical and oblique permeameter test. Anisotropic and heterogeneous properties of riverbed hydraulic conductivity were identified. Grain size analysis and flood wave response technique were checked along with the permeameter test for the riverbed hydraulic conductivity.

  • PDF

Groundwaterflow analysis of discontinuous rock mass with probabilistic approach (통계적 접근법에 의한 불연속암반의 지하수 유동해석)

  • 장현익;장근무;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.30-38
    • /
    • 1996
  • A two dimensional analysis program for groundwater flow in fractured network was developed to analyze the influence of discontinuity characteristics on groundwater flow. This program involves the generation of discontinuities and also connectivity analysis. The discontinuities were generated by the probabilistic density function(P.D.F.) reflecting the characteristics of discontinuities. And the fracture network model was completed through the connectivity analysis. This program also involves the analysis of groundwater flow through the discontinuity network. The result of numerical experiment shows that the equivalent hydraulic conductivity increased and became closer to isotropic as the density and trace length increased. And hydraulic head decreased along the fracture zone because of much water-flow. The grouting increased the groundwater head around cavern. An analysis of groundwater flow through discontinuity network was performed around underground oil storage cavern which is now under construction. The probabilistic density functions(P.D.F) were obtained from the investigation of the discontinuity trace map. When the anisotropic hydraulic conductivity is used, the flow rate into the cavern was below the acceptable value to maintain the hydraulic containment. But when the isotropic hydraulic conductivity is used, the flow rate was above the acceptable value.

  • PDF

The Influence of K-ratio and Seepage Velocity on Piping Occurrence (Piping현상 발생에 미치는 투수계수비와 침투유속의 영향에 대한 연구)

  • Huh, Kyung-Han;Chang, Ock-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • In case of judging the stability of dike or dam structures which need hydraulic interception, the first thing to do is to examine whether a piping phenomenon occurred or not. Generally, dike or dam structures are constructed while layer compacting is executed, so permeability is likely to be anisotropic- different from each other in hydraulic conductivity in the horizontal direction [$k_x$] and hydraulic conductivity in the vertical direction[$k_y$]. This study looked into exit hydraulic gradient and Seepage velocity by conducting an Seepage analysis subsequent to various hydraulic conductivity ratios[k-ratio = ky / kx] and examined the influence on piping by comparing & examining critical Seepage Velocity based on critical hydraulic gradient in theoretical equation and critical Seepage Velocity in empirical equation. As the research result, it was found that hydraulic conductivity ratio operates as a very important factor in case the stability against piping occurrence is considered with the concept of critical hydraulic gradient, but relatively the hydraulic conductivity ratio is very low in its importance in relation to the concept of critical Seepage Velocity.

Effects of GSI and Joint Orientation on the Change of Hydraulic Conductivity (GSI 및 절리의 방향이 수리전도도 변화에 미치는 영향)

  • Yoon, Yong-Kyun
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.225-232
    • /
    • 2010
  • In this study, a newly modified 3-dimensional strain-dependent hydraulic conductivity modification relation which incorporates the influences of normal deformation and shear dilation is suggested. Since rock mass is simulated as a orthogonally jointed medium, an anisotropic hydraulic conductivity field can be evaluated using that relation. The empirical relationship on the basis of GSI and disturbance factor has been used to estimate the value of a modulus reduction ratio (ratio of rock mass deformation modulus to rock matrix elastic modulus). Principal hydraulic conductivity directions is not generally coincident with the global coordinate due to the inclining of joint and the influence of joint inclination is evaluated under strain rotation. Result shows that change of hydraulic conductivity does decreases with the increase of GSI and disturbance factor has much effects on the hydraulic conductivity of rock mass getting GSI value above 50. It is found that the inclination of joint impacts on the variation of hydraulic conductivity.

Groundwater Flow Characterization in the Vicinity of the Underground Caverns by Groundwater Level Changes (지하수위 변화에 따른 지하공동 주변의 지하수 유동특성 해석)

  • 강재기;양형식;김경수;김천수
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.465-475
    • /
    • 2003
  • Groundwater inflow into the caverns constructed in fractured rock mass was simulated by numerical modeling, NAPSAC (DFN, discrete fracture network model) and NAMMU (CPM, continuous porous media model), a finite-element software package for groundwater flow in 3D fractured media developed by AEA Technology, UK. The input parameters for modeling were determined on surface fracture survey, core logging and single hole hydraulic test data. In order to predict the groundwater inflow more accurately, the anisotropic hydraulic conductivity was considered. The anisotropic hydraulic conductivities were calculated from the fracture network properties. With a minor adjustment during model calibration, the numerical modeling is able to reproduce reasonably groundwater inflows into cavern and the travel length and times to the ground surface along the flow paths in the normal, dry and rainy seasons.

Analysis of the Pathways and Travel Times for Groundwater in Volcanic Rock Using 3D Fracture Network (화산암질 암반에서 3차원 균열망 모델을 이용한 지하수 유동경로 및 유동시간 해석)

  • 박병윤;김경수;김천수;배대석;이희근
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.42-58
    • /
    • 2001
  • In order to protect the environment from waste disposal activities, the prediction of the flux and flow paths of the contaminants from underground facilities should be assessed as accurately as possible. Especially, the prediction of the pathways and travel times of the nuclides from high level radioactive wastes in a deep repository to biosphere is one of the primary tasks for assessing the ultimate safety and performance of the repository. Since the contaminants are mainly transported with groundwater along the discontinuities developed within rock mass, the characteristics of groundwater flow through discontinuities is important for the prediction of contaminant fates as well as safety assessment of a repository. In this study, the actual fracture network could be effectively generated based on in situ data by separating geometric parameter and hydraulic parameter. The calculated anisotropic hydraulic conductivity was applied to a 3D porous medium model to calculate the path flow and travel time of the large studied area with the consideration of the complex topology in the area. Using the model, the pathways and travel times for groundwater were analyzed. From this study, it was concluded that the suggested techniques and procedures for predicting the pathways and travel times of groundwater from underground facilities to biosphere is acceptable and those can be applied to the safety assessment of a repository for radioactive wastes.

  • PDF

Effects of Joint Density and Size Distribution on Hydrogeologic Characteristics of the 2-D DFN System (절리의 빈도 및 길이분포가 이차원 DFN 시스템의 수리지질학적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi;Lee, Dahye
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.61-71
    • /
    • 2017
  • The effects of joint density and size distribution on the hydrogeologic characteristics of jointed rock masses are addressed through numerical experiments based on the 2-D DFN (discrete fracture network) fluid flow analysis. Using two joint sets, a total of 51 2-D joint network system were generated with various joint density and size distribution. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$, and total of 612 $20m{\times}20m$ DFN blocks were prepared to calculate the directional block conductivity. Also, the theoretical block conductivity, principal conductivity tensor and average block conductivity for each generated joint network system were determined. The directional block conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the increase of joint density or size distribution. However, the anisotropy of block hydraulic conductivity increases with the increase of density discrepancy between the joint sets, and the chance for the equivalent continuum behavior were found to decrease. The smaller the intersection angle of the two joint sets, the more the equivalent continuum behavior were affected by the change of joint density and size distribution. Even though the intersection angle is small enough that it is difficult to have equivalent continuum behavior, the chance for anisotropic equivalent continuum behavior increases as joint density or size distribution increases.

Analysis of Analytical Models and Numerical Model for Evaluating Induced Infiltration Rate (유도침투량의 정량화를 위한 해석모형과 수치모형의 분석)

  • Lee, Do-Hun;Lee, Eun-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.301-310
    • /
    • 1999
  • In this paper a numerical model and two analytical models in the hydraulically connected stream-aquifer system were analyzed to compare the induced infiltration rate curves derived from each model. And we also examined the effects of anisotropy of hydraulic conductivity and the direction of the ambient ground water flow on the quantification of the induced infiltration rate. The induced infiltration rate curve determined by models is very simple and useful for estimating the induced infiltration rate since it contains only four physical variables such as the induced infiltration rate, the pumping rate, the distance between the pumping well and the stream, and the ambient ground water flow rate. Under the conditions tested in this paper the induced infiltration rate curves resulted from the Wilson's analytical model and FEWA numerical model were in good agreement, and the anisotropic ratio of hydraulic conductivity was evaluated as a physical factor which influences the behaviour of the induced infiltration rate curve. The methods and results of the paper might Icad to improve the understanding of the induced infiltration phenomenon and can be applied to the planning and disign of pumping well and the optimal determination of the induced infiltration rate and pumping rate for water quality management of the water supply wells.

  • PDF

Groundwater Flow Modeling in a Block-Scale Fractured Rocks considering the Fractured Zones (단열대의 영향을 고려한 블록 규모 단열 암반에서의 지하수 유동 모의)

  • Ko, Nak-Youl;Ji, Sung-Hoon;Koh, Yong-Kwon;Choi, Jon-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.159-166
    • /
    • 2010
  • The block-scale groundwater flow system at Olkiluoto site in Finland was simulated. The heterogeneous and anisotropic hydraulic conductivity field for the domain was constructed from the discrete fracture network, which considered only the fractured zones identified in the deep boreholes installed in the study site. The groundwater flow model was calibrated by adjusting the recharge rate and the transmissivities of the fractured zones to fit the calculated hydraulic heads and into- and out-flow rates in the observation intervals of the boreholes with the observed ones. In the calibrated model, the calculated flow rates at some intervals were not in accordance with the observed ones although the calculated hydraulic heads fit well with the observed ones, which revealed that the number of the conduits for groundwater flow is insufficient in the conceptual model for groundwater flow modeling. Therefore, it was recommended that the potential local conduits such as background fractures should be added to the present conceptual model.