International Journal of Fuzzy Logic and Intelligent Systems
/
제14권2호
/
pp.84-90
/
2014
This paper presents the results of three-dimensional face point cloud smoothing based on a modified anisotropic diffusion method. The focus of this research was to obtain a 3D face point cloud with a smooth texture and number of vertices equal to the number of vertices input during the smoothing process. Different from other methods, such as using a template D face model, modified anisotropic diffusion only uses basic concepts of convolution and filtering which do not require a complex process. In this research, we used 6D point cloud face data where the first 3D point cloud contained data pertaining to noisy x-, y-, and z-coordinate information, and the other 3D point cloud contained data regarding the red, green, and blue pixel layers as an input system. We used vertex selection to modify the original anisotropic diffusion. The results show that our method has improved performance relative to the original anisotropic diffusion method.
본 논문은 블록DCT(Discrete Cosine Transform) 기반의 영상 압축 과정에서 발생하는 블록효과(block artifact)를 제거하기 위해 ALM(Alvarez, Lions, and Morel) 확산 모델에 기반을 둔 새로운 이방성 확산(anisotropic diffusion)을 제안한다. 등방성 확산은 평탄 영역에 나타나는 블록 경계를 제거하는 역할을 하는 반면, 이방성 확산은 윤곽선 영역이나 텍스쳐 영역을 보존하는 역할을 하기 때문에, 제안된 확산 모델은 블록 효과를 제거하면서 윤곽선(edge)을 보존하기 위해 등방성 확산(isotropic diffusion)과 이방성 확산의 비율을 제어하는 확산비율 조절 매개 변수(RCP : rate control parameter)가 제안 되었다. 또한, 텍스쳐 영역의 과도한 평탄화를 막기 위해 속도 매개 변수(SAP : speed control parameter)를 고안하였으며, 이는 텍스쳐 영역의 확산 속도를 감소시기는 역할을 한다.
This study proposed a modified anisotropic diffusion restoration for image classification. The anisotropic diffusion restoration uses a probabilistic model based on Markov random field, which represents geographical connectedness existing in many remotely sensed images, and restores them through an iterative diffusion processing. In every iteration, the bonding-strength coefficient associated with the spatial connectedness is adaptively estimated as a function of brightness gradient. The gradient function involves a constant called "temperature", which determines the amount of discontinuity and is continuously decreased in the iterations. In this study, the proposed method has been extensively evaluated using simulated images that were generated from various patterns. These patterns represent the types of natural and artificial land-use. The simulated images were restored by the modified anisotropic diffusion technique, and then classified by a multistage hierarchical clustering classification. The classification results were compared to them of the non-restored simulation images. The restoration with an appropriate temperature considerably reduces error in classification, especially for noisy images. This study made experiments on the satellite images remotely sensed on the Korean peninsula. The experimental results show that the proposed approach is also very effective on image classification in remote sensing.
본 논문은 수정된 이방성 확산 펄터를 이용한 영상 개선 방법을 제안하였다. 이를 위하여 최소 신뢰 스케일을 기반으로 하는 센서 잡음 추정과 스케일 스페이스 방법을 도입하였다. 이때 이방성 필터는 구해진 임계값 함수와 국부 기울기에 의해 수정되었다. 모의 실험을 통해 제안한 방법이 평탄 영역에서의 잡음을 거의 증폭시키지 않으면서도 뛰어난 에지 향상을 보임을 증명할 수 있었다.
이방성 확산은 영상 분할 분야에서 광범위하게 사용되는 방식이다. 기존의 전통적인 이방성 확산 [1]-[6]에서는 이미지의 대각선 방향을 고려하지 않고 4 방향(동, 서, 남, 북)을 주로 이용하였다. 전통적인 이방성 확산(Diffusion)을 이용한 영상 분할은 확산이 반복될수록 윤곽선 정보를 적절히 유지 못하거나 잡음을 제거하지 못함으로써 웨터쉐드(Watershed) 알고리즘을 적용하는 경우 과다 분할을 피할 수 없다는 단점을 갖고 있다. 본 논문에서는 전통적인 이방성 확산의 이러한 단점을 보완하기 위하여 대각선 방향에 기반한 새로운 이방성 확산을 제안하고, 워터쉐드를 이용한 영상 분할 방법을 적용하였다. 실험 결과 본 논문에서 제안한 대각선 방향을 포함한 이방성 확산을 적용할 경우 기존의 방법과 비교하여 약 2배의 속도 향상을 가져왔으며, Circle 이미지의 경우 약 $0.45{\sim}2.33(dB)$정도 성능 향상된 화질을 보였다. 또한 기존의 방법보다 과다 분할이 줄어들고 영상이 매우 효과적으로 분할됨을 확인하였다.
The anisotropic-diffusion convection equation with exponentially variable coefficients is discussed in this paper. Numerical solutions are found using a combined Laplace transform and boundary element method. The variable coefficients equation is usually used to model problems of functionally graded media. First the variable coefficients equation is transformed to a constant coefficients equation. The constant coefficients equation is then Laplace-transformed so that the time variable vanishes. The Laplace-transformed equation is consequently written as a boundary integral equation which involves a time-free fundamental solution. The boundary integral equation is therefore employed to find numerical solutions using a standard boundary element method. Finally the results obtained are inversely transformed numerically using the Stehfest formula to get solutions in the time variable. The combined Laplace transform and boundary element method are easy to implement and accurate for solving unsteady problems of anisotropic exponentially graded media governed by the diffusion convection equation.
Existing methods for image segmentation using diffusion can't preserve contour information, or noises with high gradients become more salient as the umber of times of the diffusion increases, resulting in over-segmentation when applied to watershed. This thesis proposes a method for image segmentation by applying morphology operation together with robust anisotropic diffusion. For an input image, transformed into LUV color space, closing by reconstruction and anisotropic diffusion are applied to obtain a simplified image which preserves contour information with noises removed. With gradients computed from this simplifed images, watershed algorithm is applied. Experiments show that color images are segmented very effectively without over-segmentation.
The essential idea of de-noising is referring to neighboring pixels of a center pixel to be updated. Conventional adaptive de-noising filters use local statistics, i.e., mean and variance, of neighboring pixels including the center pixel. The drawback of adaptive de-noising filters is that their performance becomes low when edges are contained in neighboring pixels, while anisotropic diffusion de-noising filters remove adaptively noises and preserve edges considering intensity difference between neighboring pixel and the center pixel. The anisotropic diffusion de-noising filters, however, use only intensity difference between neighboring pixels and the center pixel, i.e., local statistics of neighboring pixels and the center pixel are not considered. We propose a new connectivity function of two adjacent pixels using statistics of neighboring pixels and apply connectivity function to diffusion coefficient. Experimental results using an aerial image corrupted by uniform and Gaussian noises showed that the proposed algorithm removed more efficiently noises than conventional diffusion filter and median filter.
본 연구에서는 비등방성 2차원 확산 기반 필터를 이용하여 전산화단층영상(computed tomography, CT)의 노이즈 제거와 공간분해능을 향상하고자 하였다. 실험은 4-채널 다중검출기 전산화단층영상기기(4-channel multi-detector computed tomography, MDCT)를 이용하였으며, CT 영상품질 평가를 위해 미국 의학물리학자협의회(american association of physicists in medicine, AAPM) CT 성능 평가용 팬톰을 사용하였다. X-선 조사 조건은 120 kVp, 100 mAs로 고정한 후 ultra-high resolution으로 10 mm 축 방향 스캔 하였다. 본 연구에서 제안한 비등방성 2차원 확산 기반 필터는 원 영상에 각 픽셀에 가중치 1.2를 곱하고 0.4% 히스토그램 스트레칭을 통해 영상의 대조도를 증가시킨 후 비등방성 2차원 확산 필터를 적용하였다. 그 결과, 공간분해능은 원 영상에서 0.75 mm까지 구분되었지만 제안한 비등방성 2차원 확산 기반 필터 영상에서는 0.40 mm까지 구분되었다. 원 영상의 노이즈는 46.0, 제안한 비등방성 2차원 확산 기반 필터 영상의 노이즈는 33.5로 27.2%가 감소하였다. 우리가 제안한 비등방성 2차원 확산 기반 필터는 CT의 노이즈 제거와 공간분해능을 향상시킬 수 있었다.
현재 멀티미디어 기술의 발달로 인하여 영상의 전처리 및 후처리 과정을 이용한 수정 작업으로 고품질의 영상 표현 및 다양한 영상 처리가 가능하다. 영상 처리 기법 중에서 이방성 확산의 경우 영상의 스페클 노이즈 제거, 에지 검출, 영상 분할 등에 응용할 수 있는 효과적인 확산 필터링으로 활용되고 있다. 하지만 전통적인 이방성 확산은 십자형 커널을 기반으로 하고 있기 때문에 확산 필터링을 반복 적용하면 영상의 에지가 수평 및 수직 방향으로 집중되는 문제점이 있다. 본 논문에서는 기존의 십자형 커널 기반의 이방성 확산 문제점을 해결하기 위하여 기울기의 방향성에 기반한 새로운 이방성 확산 방식을 제안한다. 제안된 방식은 십자형 커널을 확장하여 대각선 방향 정보를 포함한 8방향의 정방형 커널을 기반으로 작은 기울기를 갖는 방향으로 이방성 확산을 적용한다. 제안된 방식의 실험 결과 에지가 수평 및 수직 방향으로 집중되는 문제점을 해결하면서 임펄스성 노이즈를 제거하여 고품질의 영상을 획득할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.