• Title/Summary/Keyword: anion-exchange resin

Search Result 144, Processing Time 0.028 seconds

Synthesis of Amin-type Anion Exchanger from Acrylic Acid Grafted Polypropylene Nonwoven Fabric and Its Ion-exchange Property(II) (아크릴산 그라프트 폴리프로필렌 부직포로부터 아민형 음이온 교환체의 합성 및 이온교환특성(II))

  • Na, Choon-Ki;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.775-782
    • /
    • 2009
  • PP-g-AA-Am nonwoven fabric, which possess anionic exchangeable function, was prepared by chemical modification of carboxyl (-COOH) group of PP-g-AA nonwoven fabric to amine ($-NH_2$) group using diethylene triamine (DETA). Its adsorption characteristics for anionic nutrients including isotherm, kinetics and co-anions were studied by batch adsorption experiments. Adsorption equilibriums of $PO_4$-P on PP-g-AA-Am fabric were well described by the Langmuir isotherm model, and their adsorption energies were ranged 10.3 kJ/mol indicating an ion-exchange process as primary adsorption mechanism. The adsorption selectivity of PP-g-AA-Am nonwoven fabric for anions under competition with each other was in following order: $SO_4\;^{2-}$>$PO_4\;^{3-}$>$NO_3\;^-$>$NO_2\;^-$. Also, all results obtained from this study indicate that the $PO_4$-P removal capacity of PP-g-AA-Am nonwoven fabric was extremely superior to that of PA308 anion-exchange resin.

Preparation of Heterogeneous Bipolar Membranes Using Poly (phenylene oxide, PPO) Polyelectrolyte and Their Water Splitting Properties (Poly (phenylene oxide, PPO) 고분자 전해질을 이용한 불균질 바이폴라막 제조 및 물분해 특성)

  • Kim, In Sik;Hwang, Seong Yeon;Kang, Byung Gwan;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.65-72
    • /
    • 2019
  • In this study, heterogeneous ion exchange membranes were prepared by casting method with various mixing ratios of PPO ion-selective solution and ion exchange resin. Then heterogeneous bipolar membranes were prepared by using this. The water content of heterogeneous cation and anion exchange membranes were 60~80% respectively, the ion exchange capacity was 2.81~3.26 meq/g, 2.31~2.74 meq/g and electrical resistances were $1.65{\sim}1.45{\Omega}{\cdot}cm^2$ and $1.55{\sim}1.05{\Omega}{\cdot}cm^2$. The tensile strength of heterogeneous bipolar membrane was lower than that of PPO resin before functionalization ($700Kg_f/cm^2$). The tensile strength of heterogeneous bipolar membrane with catalyst layer was lower than that of non-catalytic heterogeneous bipolar membrane. The water splitting voltage of the heterogeneous bipolar membrane with catalyst layer was low and stable at a minimum of 1.7~1.8 V, maximum 3.9~4.0 V, and the water splitting voltage of the non-catalytic heterogeneous bipolar membrane was constant at 3.8~4.0 V.

Separation of Vanadium and Tungsten from Spent SCR DeNOX Catalyst by Ion-exchange Column (SCR 탈질 폐촉매로부터 이온교환칼럼을 이용한 바나듐과 텅스텐의 분리)

  • Heo, Seo-Jin;Jeon, Jong-Hyuk;Kim, Rina;Kim, Chul-Joo;Chung, Kyeong Woo;Jeon, Ho-Seok;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.54-63
    • /
    • 2021
  • Vanadium and tungsten can be obtained by separating/recovering the leaching solution from a spent SCR DeNOX catalyst using the soda roasting-water leaching process. Therefore, in this study, the adsorption/desorption mechanism of vanadium and tungsten in an ion-exchange column was investigated using Lewatit MonoPlus MP 600, a strong basic anion exchange resin. The operating conditions for the separation of vanadium and tungsten in the ion-exchange column was intended to present. By conducting a continuous adsorption experiment in a pH 8.5 solution, the adsorption capacity of vanadium and tungsten was found to be 44.75 and 64.92 mg/(g of resin), respectively, which showed that the adsorption capacity of tungsten was larger than that of vanadium because of the difference in ion charge. Vanadium has a higher affinity for MP 600 than tungsten. Consequently, as the vanadium-containing solution is eluted through the ion exchange resin onto which tungsten is adsorbed, the adsorbed tungsten is exchanged with vanadium and desorbed. A continuous experiment was performed with a solution of vanadium and tungsten prepared at the same concentration as the spent SCR DeNOX catalyst leachate. The adsorption capacity of vanadium was found to be 48.72 mg/(g of resin) and 80% of the supplied vanadium was adsorbed; in contrast, almost no tungsten was adsorbed. Therefore, vanadium and tungsten were separated effectively. The ion exchange resin was treated with 2 M HCl at 15 mL/h, and 97.7% of the vanadium(99% purity) could be desorbed. After desorption, NH4Cl was added to precipitate ammonium polyvanadate at 90℃ and recover 93% of the vanadium.

A study on the optimization of Ion Exchange Resin operating conditions for removal of KCl from CKD extract (CKD 추출액내 KCl 제거를 위한 이온교환수지 조업조건 최적화 연구)

  • Jang, Younghee;Lee, Ye Hwan;Kim, Jiyu;Park, Il Gun;Lee, Ju-Yeol;Park, Byung Hyun;Kim, Seong-Cheol;Lee, Sang Moon;Kim, Sung Su
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1088-1095
    • /
    • 2019
  • The CKD extract is wastewater from which KCl in CKD has been removed to reuse CKD as a cement raw material, and tried to reuse no extracts due to problems such as wastewater treatment facility expansion. As a result of removing KCl by the ion exchange method, the pH of the extract after ion exchange decreased from 12.7 to less than pH 2, and it was confirmed that H+ of the cation exchange resin was dissolved in the extract through ion exchange. In addition, the selectivity of the ion exchange was removed in the order of Ca2+, K+, it was determined that the increase in the contact time to remove the K+ ions. The batch system had a contact time of 6 times or more, compared to the continuous system, and showed 4 times of K+ removal efficiency and 7 times of Cl- removal efficiency. It was showed by analyzing the pH of the extract that more H+ of the cation exchange resin was extracted than OH- of anion exchange resin as the pH of the extract was changed.

Chloride Penetration Properties of Portland Cement Mortar Substituted with Anion Exchange Resin Powder (음이온교환수지 분말이 치환된 포틀랜드 시멘트 모르타르의 염소이온 침투 특성)

  • Lee, Yun-Su;Lim, Seung-Min;Park, Jang-Hyun;Jung, Do-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Chloride ion, which penetrates into the cement composites from the outside, generally diffuses by the concentration gradient. Chloride ions are adsorbed by the chemical reaction with cement hydrates. Recent studies have shown that anion exchange resin (AER) powder can effectively adsorb the chloride ion in the cement composites, and thus, the cement composites containing AER have a high chloride adsorption capacity and a good resistance for chloride penetration. In this study, the chloride adsorption ability of the AER powder was investigated under the conditions of distilled water and calcium hydroxide saturated solution to determine if the AER powder is less effective to increase the chloride adsorption ability after grinding process. The chloride adsorption ability of AER powder was compared with the previous research about the chloride adsorption of AER bead. In addition, the compressive strength, chloride diffusion coefficient (using NT Build 492 method), and the chloride profile of cement mortar substituted with AER powder were investigated. There was no decrease in the chloride adsorption capacity of AER powder but increase in the kinetic property for chloride adsorption after the grinding process. The AER powder could absorb the chloride ion in the mortar quickly, and showed better chloride ion adsorption ability than the cement hydrates.

Separation Behavior of Vanadium and Tungsten from the Spent SCR DeNOX Catalyst by Strong Basic Anion Exchange Resin (SCR 탈질 폐촉매로부터 강염기성 음이온교환수지를 이용한 바나듐/텅스텐 분리거동 고찰)

  • Heo, Seo-Jin;Jeon, Jong-Hyuk;Kim, Chul-Joo;Chung, Kueong-Woo;Jeon, Ho-Seok;Yoon, Do-Young;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.38-47
    • /
    • 2020
  • In this study, factors affecting the adsorption reaction for the separation/recovery of V and W using Lewatit monoplus MP 600, a strong basic anion exchange resin, from the leachate obtained through the soda roasting-water leaching process from the spent SCR DeNOX catalyst investigated and the adsorption mechanism was discussed based on the results. In the case of the mixed solution of V and W, both ions showed a high adsorption ratio at pH 2-6, but the adsorption of W was greatly reduced at pH 8. In the adsorption isothermal experiment, both V and W were fitted well at the Langmuir adsorption isotherm, and the reaction kinetics were fitted well at pseudo-second-order. As a result of conducting an adsorption experiment by adjusting the pH with H2SO4 to remove Si, which inhibits the adsorption of V and W from the leachate, the lowest W adsorption ratio was shown at pH 8.5. Desorption of W was hardly achieved in strongly acidic solutions, and desorption of V was well performed in both strongly acidic and strongly basic solutions.

Separation of Fe(III) and Concentration of Metal Ions Using Cation Exchange Resin Bonded with Xylenol Orange (Xylenol Orange가 결합된 양이온 교환체에 의한 금속이온의 농축 및 Fe(III)의 분리)

  • Park, Chan Il;Kim, Hyun Soo;Cha, Ki Won
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.6
    • /
    • pp.651-655
    • /
    • 1999
  • Xylenol Orange was bonded on an anion-exchange resin (Amberlite lRA 400, in $Cl^-$form) by batch equilibration. The resin was proved to be stable in acidic solutions of about 0.1 M HCl, $HNO_3$ or $H_2SO_4$. Sorption capacities for the metal ions on the Amberlite IRA 400 bonded with xylenol orange have been measured by batch method. The result showed that Fe(III) is higher than any other metals for sorption capacity. The preconcentration and the separation of Fe(lll) from the mixture soIution, therefore, were carried out with the 0.1 M sulfosalicylic acid as an eluent.

  • PDF

Separation of Fe(Ⅱ) from Co(Ⅱ), Ni(Ⅱ), Pb(Ⅱ) Using Amberlite IRA 400 Loaded with Alizarin Red S (Alizarin Red S가 결합된 Amberlite IRA 400 에 의한 Co(Ⅱ), Ni(Ⅱ), Pb(Ⅱ) 중 Fe(Ⅱ)의 분리)

  • Cha, Ki Won;Park, Chan Il;Kang, Ji Soo
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.2
    • /
    • pp.172-176
    • /
    • 1998
  • An anion exchange resin which has Alizarin Red S (ARS) as functional group was prepared by batch method. The resin is stable in acidic solutions below 0.5 M hydrochloric acid, nitric acid and sulfuric acid and adsorption capacity of Fe(Ⅱ) ion on the resin was larger than other metal ions. The preconcentration and the separation of Fe(Ⅱ) ion from the mixture solution were carried out with the pH 4.5 buffer solution and 0.1 M $HNO_{3}$ as eluents.

  • PDF

Determination of Gold in Ores (金鑛石中의 金分析)

  • Yang Jae Hyun;Cha Kee Won
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.8-11
    • /
    • 1967
  • A method of determination of gold in ores has been established: Disolved ore solution is evaporated to dryness, redissolved with 0.1N HCl then chloroaurate formed is adsorbed on anion exchange resin, Dowex $1\;{\cdot}\;{\times}4$. The resin is ignited and the residue is dissolved with HCl-$HNO_3$. After evaporation of the acid, and then dilution with water, sodium azide is added. The gold is extracted with amyl alcohol from the solution buffered to pH 6. The gold is determined by measuring absorbancy of the alcohol layer spectrophotometricaly at $385m{\mu}$. Various factors, HCl concentration, amount of the resin rate, if adsorption, foreign ions, effecting to the method, have been examined. This method seems to be satisfactory for the determination of gold presented dawn to 1g per metric ton in ore.

  • PDF

Separation of Rare Earth Elements Using Ln-EDTA Eluent in an Anion Exchanger (음이온 교환수지에서의 희토류-EDTA 용리액에 의한 희토류 원소의 분리)

  • Cha, Ki-Won;Park, Chan-Il;Chang, Byung-Doo;Hong, Sung-Wook
    • Analytical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.53-59
    • /
    • 1997
  • Chloride form anion exchange resin was used to separate one of the elements from the rare earth mixture using respectable Ln-EDTA eluent. $Sm^{3+}$, $La^{3+}$ or $Ce^{4+}$ complexed with EDTA was passed through the resin column and eluted with a Sm-EDTA solution as an eluent. Here all the rare earth element ions except $Sm^{3+}$ were passed. Adsorbed $Sm^{3+}$ in resin was eluted with 1.0 M HCl solution. If La-EDTA solution as an eluent was used to separate lanthanum ions, lanthanum ions were eluted together with other rare earth elements. When Ce-EDTA solution was also used for separation of $Ce^{4+}$, it was eluted in the region of other rare earth elements. In the case of Sm-EDTA elution, the elution mechanism was as follows : Absorption : $RCl+Ln-Y^-{\leftrightarrows}RLnY+Cl^-$, Sm-EDTA elution : $RLnY+Sm-Y^-{\leftrightarrows}RSmY+Ln-Y^-$, HCl elution : $RSmY+HCl{\leftrightarrows}RCl+Sm-Y^-$.

  • PDF