• Title/Summary/Keyword: anion channel

Search Result 42, Processing Time 0.029 seconds

Deficiency of Anoctamin 5/TMEM16E causes nuclear positioning defect and impairs Ca2+ signaling of differentiated C2C12 myotubes

  • Phuong, Tam Thi Thanh;An, Jieun;Park, Sun Hwa;Kim, Ami;Choi, Hyun Bin;Kang, Tong Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.539-547
    • /
    • 2019
  • Anoctamin 5 (ANO5)/TMEM16E belongs to a member of the ANO/TMEM16 family member of anion channels. However, it is a matter of debate whether ANO5 functions as a genuine plasma membrane chloride channel. It has been recognized that mutations in the ANO5 gene cause many skeletal muscle diseases such as limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi muscular dystrophy type 3 (MMD3) in human. However, the molecular mechanisms of the skeletal myopathies caused by ANO5 defects are poorly understood. To understand the role of ANO5 in skeletal muscle development and function, we silenced the ANO5 gene in C2C12 myoblasts and evaluated whether it impairs myogenesis and myotube function. ANO5 knockdown (ANO5-KD) by shRNA resulted in clustered or aggregated nuclei at the body of myotubes without affecting differentiation or myotube formation. Nuclear positioning defect of ANO5-KD myotubes was accompanied with reduced expression of Kif5b protein, a kinesin-related motor protein that controls nuclear transport during myogenesis. ANO5-KD impaired depolarization-induced $[Ca2^{+}]_i$ transient and reduced sarcoplasmic reticulum (SR) $Ca^{2+}$ storage. ANO5-KD resulted in reduced protein expression of the dihydropyridine receptor (DHPR) and SR $Ca^{2+}-ATPase$ subtype 1. In addition, ANO5-KD compromised co-localization between DHPR and ryanodine receptor subtype 1. It is concluded that ANO5-KD causes nuclear positioning defect by reduction of Kif5b expression, and compromises $Ca^{2+}$ signaling by downregulating the expression of DHPR and SERCA proteins.

The identification of novel regions for reproduction trait in Landrace and Large White pigs using a single step genome-wide association study

  • Suwannasing, Rattikan;Duangjinda, Monchai;Boonkum, Wuttigrai;Taharnklaew, Rutjawate;Tuangsithtanon, Komson
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1852-1862
    • /
    • 2018
  • Objective: The purpose of this study was to investigate a single step genome-wide association study (ssGWAS) for identifying genomic regions affecting reproductive traits in Landrace and Large White pigs. Methods: The traits included the number of pigs weaned per sow per year (PWSY), the number of litters per sow per year (LSY), pigs weaned per litters (PWL), born alive per litters (BAL), non-productive day (NPD) and wean to conception interval per litters (W2CL). A total of 321 animals (140 Landrace and 181 Large White pigs) were genotyped with the Illumina Porcine SNP 60k BeadChip, containing 61,177 single nucleotide polymorphisms (SNPs), while multiple traits single-step genomic BLUP method was used to calculate variances of 5 SNP windows for 11,048 Landrace and 13,985 Large White data records. Results: The outcome of ssGWAS on the reproductive traits identified twenty-five and twenty-two SNPs associated with reproductive traits in Landrace and Large White, respectively. Three known genes were identified to be candidate genes in Landrace pigs including retinol binding protein 7, and ubiquitination factor E4B genes for PWL, BAL, W2CL, and PWSY and one gene, solute carrier organic anion transporter family member 6A1, for LSY and NPD. Meanwhile, five genes were identified to be candidate genes in Large White, two of which, aldehyde dehydrogenase 1 family member A3 and leucine rich repeat kinase 1, associated with all of six reproduction traits and three genes; retrotransposon Gag like 4, transient receptor potential cation channel subfamily C member 5, and LHFPL tetraspan subfamily member 1 for five traits except W2CL. Conclusion: The genomic regions identified in this study provided a start-up point for marker assisted selection and estimating genomic breeding values for improving reproductive traits in commercial pig populations.

The effect of eleutherococcus senticosus on metabolism-associated protein expression in 3T3-L1 and C2C12 cells

  • Hashimoto, Takeshi;Okada, Yoko;Yamanaka, Atsushi;Ono, Natsuhiko;Uryu, Keisuke;Maru, Isafumi
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.3
    • /
    • pp.13-18
    • /
    • 2020
  • [Purpose] In vivo studies have demonstrated the ergogenic benefits of eleutherococcus senticosus (ES) supplementation. ES has been observed to enhance endurance capacity, improve cardiovascular function, and alter metabolic functions (e.g., increased fat utilization); however, the exact mechanisms involved remain unknown. We aimed to determine whether ES could effectively induce fat loss and improve muscle metabolic profiles through increases in lipolysis- and lipid metabolism-associated protein expression in 3T3-L1 adipocytes and C2C12 skeletal muscle cells, respectively, to uncover the direct effects of ES on adipocytes and skeletal muscle cells. [Methods] Different doses of ES extracts (0.2, 0.5, and 1.0 mg/mL) were added to cells (0.2 ES, 0.5 ES, and 1.0 ES, respectively) for 72 h and compared to the vehicle control (control). [Results] The intracellular triacylglycerol (TG) content significantly decreased (p < 0.05 for 0.2 ES, p < 0.01 for 0.5 ES and 1.0 ES) in 3T3-L1 cells. Adipose triglyceride lipase, which is involved in active lipolysis, was significantly higher in the 1.0 ES group than in the control group (p < 0.01) of 3T3-L1 adipocytes. In C2C12 cells, the mitochondrial protein voltage-dependent anion channel (VDAC) was significantly increased in the 1.0 ES group (p < 0.01). Furthermore, we found that 1.0 ES activated both 5' AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in skeletal muscle cells (p < 0.01). [Conclusion] These findings suggest that ES extracts decreased TG content, presumably by increasing lipase in adipocytes and metabolism-associated protein expression as well as mitochondrial biogenesis in muscle cells. These effects may corroborate previous in vivo findings regarding the ergogenic effects of ES supplementation.

Expression of anoctamin 7 (ANO7) is associated with poor prognosis and mucin 2 (MUC2) in colon adenocarcinoma: a study based on TCGA data

  • Chen, Chen;Siripat Aluksanasuwan;Keerakarn Somsuan
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.46.1-46.10
    • /
    • 2023
  • Colon adenocarcinoma (COAD) is the predominant type of colorectal cancer. Early diagnosis and treatment can significantly improve the prognosis of COAD patients. Anoctamin 7 (ANO7), an anion channel protein, has been implicated in prostate cancer and other types of cancer. In this study, we analyzed the expression of ANO7 and its correlation with clinicopathological characteristics among COAD patients using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and the University of Alabama at Birmingham CANcer (UALCAN) databases. The GEPIA2, Kaplan-Meier plotter, and the Survival Genie platform were employed for survival analysis. The co-expression network and potential function of ANO7 in COAD were analyzed using GeneFriends, the Database for Annotation, Visualization and Integrated Discovery (DAVID), GeneMANIA, and Pathway Studio. Our data analysis revealed a significant reduction in ANO7 expression levels within COAD tissues compared to normal tissues. Additionally, ANO7 expression was found to be associated with race and histological subtype. The COAD patients exhibiting low ANO7 expression had lower survival rates compared to those with high ANO7 expression. The genes correlated with ANO7 were significantly enriched in proteolysis and mucin type O-glycan biosynthesis pathway. Furthermore, ANO7 demonstrated a direct interaction and a positive co-expression correlation with mucin 2 (MUC2). In conclusion, our findings suggest that ANO7 might serve as a potential prognostic biomarker and potentially plays a role in proteolysis and mucin biosynthesis in the context of COAD.

Inhibition of Nitric Oxide-induced Neuronal Apoptosis in PC12 Cells by Epigallocatechin Gallate

  • Jung, Ji-Yeon;Jeong, Yeon-Jin;Han, Chang-Ryoung;Kim, Sun Hun;Kim, Hyun-Jin;Lee, Ki-Heon;Park, Ha-Ok;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.239-246
    • /
    • 2005
  • In the central nervous system, nitric oxide (NO) is associated with many pathological diseases such as brain ischemia, neurodegeneration and inflammation. The epigallocatechin gallate (EGCG), a major compound of green tea, is recognized as protective substance against neuronal diseases. This study is aimed to investigate the effect of EGCG on NO-induced cell death in PC12 cells. Administration of sodium nitroprusside (SNP), a NO donor, decreased cell viability in a dose- and time-dependent manner and induced genomic DNA fragmentation with cell shrinkage and chromatin condensation. EGCG diminished the decrement of cell viability and the formation of apoptotic morphologenic changes as well as DNA fragmentation by SNP. EGCG played as an antioxidant that attenuated the production of reactive oxygen species (ROS) by SNP. The cells treated with SNP showed downregulation of Bcl-2, but upregulation of Bax. EGCG ameliorated the altered expression of Bcl-2 and Bax by SNP. The release of cytochrome c from mitochondria into cytosol and expression of voltage -dependent anion channel (VDAC)1, a cytochrome c releasing channel in mitochondria, were increased in SNP-treated cells, whereas were attenuated by EGCG. The enhancement of caspase-9, preceding mitochondria-dependent pathway, caspase-8 and death receptor-dependent pathway, as well as caspase-3 activities were suppressed by EGCG. SNP upragulated Fas and Fas-L, which are death receptor assembly, whereas EGCG ameliorated the expression of Fas enhanced by SNP. These results demonstrated that EGCG has a protective effect against SNP-induced apoptosis in PC12 cells, through scavenging ROS and regulating the mitocondria- and death receptor-mediated signal pathway. The present study suggest that EGCG might be a natural neuroprotective substance.

Discriminant Analysis of Marketed Beverages Using Multi-channel Taste Evaluation System (다채널 맛 평가시스템에 의한 시판음료의 판별분석)

  • Park, Kyung-Rim;Bae, Young-Min;Park, In-Seon;Cho, Yong-Jin;Kim, Nam-Soo
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.300-306
    • /
    • 2004
  • Eight cation or anion-responsive polymer membranes were prepared by a casting procedure employing polyvinyl chloride, Bis (2-ethylhexyl)sebacate and each electroactive material in the ratio of 66 : 33 : 1. The resulting membranes were separately installed onto the sensitive area of the ionic electrodes to produce an 8-channel taste sensor array. The taste sensors of the array were connected to a high-input impedance amplifier and the amplified sensor signals were interfaced to a PC via an A/D converter. The taste evaluation system was applied to a discriminant analysis on six groups of marketed beverages like sikhye, sujunggwa, tangerine juice, ume juice, ionic drink and green tea. When the signal data from the sensor array were analyzed by principal component analysis after normalization, the 1st, 2nd and 3rd principal component explained most of the total data variance. The six groups of the analyzed beverages were discriminated well in the three dimensional principal component space. The half of the five groups of the analyzed beverages was also discriminated in the two dimensional principal component plane.

Thecharacters of Ca2+ activated Cl- channel and its role in the cardiac myocytes (심장세포에서 세포내 Ca2+ 증가에 의해 활성화되는 Cl- 통로의 특성과 역할)

  • Park, Choon-ok;Kim, Yang-mi;Haan, Jae-hee;Hong, Seong-geun
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.1
    • /
    • pp.25-36
    • /
    • 1994
  • The inward tail current after a short depolarizing pulse has been known as Na-Ca exchange current activated by intracellular calcium which forms late plateau of the action potential in rabbit atrial myocytes. Chloride conductance which is also dependent upon calcium concentration has been reported as a possible tail current in many other excitable tissues. Thus, in order to investigate the exsitance of the calcium activated chloride current and its contribution to tail current, whole cell voltage clamp measurement has been made in single atrial cells of the rabbit. The current was recorded during repolarization following a brief 2 ms depolarizing pulse to +40mV from a holding potential of -70mV. When voltage-sensitive transient outward current was blocked by 2 mM 4-aminopyridine or replacement potassium with cesium, the tail current were abolished by ryanodine$(1{\mu}M)$ or diltiazem$(10{\mu}M)$ and turned out to be calcium dependent. The magnitudes of the tail currents were increased when intracellular chloride concentration was increased to 131 mM from 21 mM. The current was decreased by extracellular sodium reduction when intracellular chloride concentration was low(21 mM), but it was little affected by extracellular sodium reduction when intracellual chloride concentration was high(131 mM). The current-voltage relationship of the difference current before and after extracellular sodium reduction, shows an exponential voltage dependence with the largest magnitude of the current occurring at negative potentials, with is similar to current-voltage relationship at negative potentials, which is similar to current-voltage relationship of Na-Ca exchange current. The current was also decreased by $10{\mu}M$ niflumic acid and 1 mM bumetanide, which is well known anion channel blockers. The reversal potentials shifted according to changes in chloride concentration. The current-voltage relationships of the niflumic acid-sensitive currents in high and low concentration of chloride were well fitted to those predicted as chloride current. From the above results, it is concluded that calcium activated chloride component exists in the tail current with Na-Ca exchange current and it shows the reversal of tail current. Therefore it is thought that in the physiologic condition it leads to rapid end of action potential which inhibits calcium influx and it contributes to maintain the low intracellular calcium concentration with Na-Ca exchange mechanism.

  • PDF

ANTI-CANCER EFFECT OF CYCLOSPORIN A ON ORAL SQUAMOUS CELL CARCINOMA CELL LINE (Cyclosporin A가 구강편평상피세포암 세포주에 미치는 항암효과)

  • Lim, Han-Wook;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.6
    • /
    • pp.474-481
    • /
    • 2004
  • Squamous cell carcinoma is the most prevalent oral cancer, which is characterized by its low survival rate, high malignancy, mortality with facial defects, and poor prognosis. Exact cause and pathogenesis of the squamous cell carcinoma is still unknown. Various routes including smoking, radiation, and viral infections predispose its genesis, and recent studies revealed that genetic defects which fail to prevent cancer proliferation play a role. Generally, a cancer develops from the decreased rate of apoptosis which is an active and voluntary cell death, and from the altered cell cycles. Anticancer effect can be obtained by recovering the apoptotic process, and by suppressing the cell cycles. Among the apoptosis related factors, bcl-2, caspase-9, and VDAC (voltage-dependent anion channel)are produced in mitochondria of the cell. Cyclosporin-A is known to induce apoptosis through its activation with VDAC. This study was to reveal the anticancer effect of Cyclosporin A to the oral squamous cell carcinoma. The inverted microscope was used to find alterations in the tissue, and sensitivity test to the anticancer cells was performed with MTT (Tetrazolium-based colorimetric) assay. Following cell line culture of primary and metastastic oral squamous cell carcinoma, electrophoresis was performed with extracted total RNA. Finally, semi-quantitative study was carried out through RT-PCR (Reverse Transcription-Polymerase Chain Reaction). The results of this study are as follows: 1. The inverted microscopic observation revealed a poorly defined cytoplasm at $2000ng{\sim}3000ng/ml$, indistinct nucleus, and apoptosis. 2. The Growth of cancer cells was decreased at 1000ng/ml of cyclosporin-A. No cancer cell growth was observed at over 2000ng/ml concentration of cyclosporin-A, and at one week, growth of cancer cells was ceased. 3. The MTT assays were decreased as cyclosporin-A concentration was increased. This means that the activation of succinyl dehydrogenase in mitochondria was decreased following administration of cyclosporin A. 4. A result of RT-PCR showed that amount of mRNA of VDAC-2 was decreased half times at a cyclosporine-A concentration of 2000ng/ml. In bcl-2, amount of mRNA was significantly decreased 1/5 times at 2000ng/ml. caspase-9, however, showed slight increase compared to the control group. From the results obtained in this study, administration of cyclosporin-A to the cell lines of oral squamous cell carcinoma induced alterations in morphology and growth of the cells as its concentration increased. Since apoptosis related factors such as VDAS-2, bcl-2, and caspase-9 also showed distinct alterations on their mRNAs, further research on cyclosporin A as an anti-cancer agent will be feasible.

Analysis of the Crystal Structure and the Relation with the Temperature Coefficient au_\varepsilon$ in $BaORe_2O_3TiO_2$ (Re=La, Nd, Y) Microwave Dielectric Ceramics ($BaORe_2O_3TiO_2$ (Re=La, Nd, Y)계 고주파 유전체의 결정구조 분석 및 온도계수 au_\varepsilon$와의 관련성)

  • 김정석;강현주;심해섭;이창희;천채일
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.136-144
    • /
    • 1999
  • Crystal structures of tungsten-bronze type microwave dielectric ceramics, $BaOLa_2O_34TiO_2$ (BLT) and $BaO(Nd_{0.77}Y_{0.23})_4TiO_2$ (B(NY)T), were analysed using the Rietveld method. The most relibale refinement was obtained by refining the cation and anion positions from the x-ray and neutron diffraction data, respectively. The ambiguites inherent in the refined crystal structure by Mateeva et al. were resolved. The $BaORe_2O_34TiO_2$ structure consiste of $3\times2$ perovskite blocks and 4 pentagon-channels. The Ti-O6 octahedrons are distroted and tilted, which, consequently, induces the displacements of Ba and Re ions producing the superlattics (c$\approx$ 7.6 $\AA$). The B(NY)T showed more severely tilted Ti-O6 octahedrons. The relative dielectric constant $\varepsilon_{\gamma}$ and temperature coefficient $\tau_\varepsilon$ are 109.5 and-$180 ppm/^{\circ}C$ in BLT, 76 and $+40 ppm/^{\circ}C$ in B(NY)T, respectively. The small Re ions produced a positive $\tau_\varepsilon$. The relation between $\tau_\varepsilon$ and the octahedron tilting in complex perovskite is discussed for the tungsten bronze type structure.

  • PDF

Involvement of Bcl-2 Family and Caspases Cascade in Sodium Fluoride-Induced Apoptosis of Human Gingival Fibroblasts

  • Jung, Ji-Yeon;Park, Jae-Hong;Jeong, Yeon-Jin;Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Sun-Hun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.289-295
    • /
    • 2006
  • Sodium fluoride (NaF) has been shown to be cytotoxic and elicit inflammatory response in human. However, the cellular mechanisms underlying NaF-induced cytotoxicity in periodontal tissues have not yet been elucidated. This study is aimed to investigate the mechanisms of NaF-induced apoptosis in human gingival fibroblast (HGF). NaF decreased the cell viability of HGF in a dose- and time-dependent manner. NaF gave rise to apoptotic morphological changes including cell shrinkage, chromatin condensation, and DNA fragmentation. However, NaF did not affect the production of ROS. In addition, NaF augumented cytochrome c release from mitochondria into the cytosol, and enhanced caspase -9 and -3 activities., cleavage (85 kDa fragments) of poly (ADP-ribose) polymerase (PARP) and upregulation of voltage-dependent anion channel (VDAC) 1. These results demonstrated that NaF-induced apoptosis in HGF may be mediated with mitochondria. Furthermore, NaF elevated caspase-8 activity and upregulated Fas-ligand (Fas-L), suggesting involvement of death receptor mediated pathway in NaF-induced apoptosis. Expression of Bcl-2, an anti-apoptotic Bcl-2 family, was downregulated, whereas expression of Bax, a pro-apoptotic Bcl-2 family, was not affected in NaF-treated HGF. These results suggest that NaF induces apoptosis in HGF through both mitochondria- and death receptor-mediated pathway mediated by Bcl-2 family.