• Title/Summary/Keyword: angular section

Search Result 113, Processing Time 0.025 seconds

Reliability of the Tone Assessment Scale for Poststroke Spasticity (뇌졸중 후 강직(spasticity) 평가를 위한 Tone Assessment Scale의 신뢰도)

  • Kim, Tae-Ho;Chung, Ey-Jung
    • Physical Therapy Korea
    • /
    • v.9 no.2
    • /
    • pp.133-144
    • /
    • 2002
  • The purpose of this study was to establish reliability of the Tone Assessment Scale (TAS) translated into Korean in patients with stroke. The TAS consists of resting posture, response to passive movement, and associated reaction to active effort. Fifteen patients (14 males, 1 female) were examined by two raters. Surface electromyography (EMG) data at elbow flexor muscle and joint excursion were collected from 6 patients. To identify the correlation between muscle activity and angular changes of elbow muscle, Pearson product moment correlation was used. The inter-rater and intra-rater reliability of the TAS ranged from very good to good (K/Kw=.61~1.00 for intra-rater and K/Kw=.73~1.00 for intra-rater comparisons) in the sections of resting posture and associated reaction. However, in the section of response to passive movement, the reliability coefficients ranged from very good to fair (Kw=.29~1.00). In the 11th item, correlation between EMG ratio of elbow flexor and angular changes of elbow joint showed statistically strong positive relationship (r=.94, p<.05). These results indicate that the TAS is selectively reliable in the sections of resting posture and associated reaction.

  • PDF

Direction Finding and Tracking using Single-Ring Circular Array Antenna and Space Division Table (단원형배열안테나와 공간분할테이블을 이용한 방향탐지 및 추적)

  • Park, Hyeongyu;Woo, Daewoong;Kim, Jaesik;Park, Jinsung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.117-124
    • /
    • 2022
  • Single-ring circular array antennas can be applied to direction finding systems in order to use nose-section in other purposes, and the interferometry is a proper direction finding method to those systems. We usually make the interferometer baseline long enough to achieve good angular accuracy. However, an interferometer with baseline longer than a half-wavelength has the ambiguity problem. In this paper, we present a novel method for solving the ambiguity problem in interferometry systems. This technique is based on the amplitude comparison method and the space division table, and it can place a target within the angular region in which the ambiguity problem does not occur by roughly estimating direction-of-arrival. The Monte Carlo simulation results show that proposed method can effectively remove the ambiguity problem in the system.

Incorporation of anisotropic scattering into the method of characteristics

  • Rahman, Anisur;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3478-3487
    • /
    • 2022
  • In this study, we incorporate an anisotropic scattering scheme involving spherical harmonics into the method of characteristics (MOC). The neutron transport solution in a light water reactor can be significantly improved because of the impact of an anisotropic scattering source with the MOC flat source approximation. Several problems are selected to verify the proposed scheme and investigate its effects and accuracy. The MOC anisotropic scattering source is based on the expansion of spherical harmonics with Legendre polynomial functions. The angular flux, scattering source, and cross section are expanded in terms of the surface spherical harmonics. Later, the polynomial is expanded to achieve the odd and even parity of the source components. Ultimately, the MOC angular and scalar fluxes are calculated from a combination of two sources. This paper presents various numerical examples that represent the hot and cold conditions of a reactor core with boron concentration, burnable absorbers, and control rod materials, with and without a reflector or baffle. Moreover, a small critical core problem is considered which involves significant neutron leakage at room temperature. We demonstrate that an anisotropic scattering source significantly improves solution accuracy for the small core high-leakage problem, as well as for practical large core analyses.

Thermal and Mechanical Properties of Poly(lactic acid) Specimens Fabricated by Various Equal-channel Angular Extrusion Processes (다양한 방식의 등통로각압축공정으로 가공된 Poly(lactic acid) 시편들의 열 및 기계적 물성)

  • Liu, Xu-Yan;Jung, Si-In;Choi, Ho-Suk;Oh, Jun-Taek;Kim, Jong-Kuk
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.206-210
    • /
    • 2011
  • We fabricated rod-like poly(lactic acid)(PLA) specimens through applying various methods of equal-channel angular extrusion(ECAE) process and investigated the change of thermal and mechanical properties of specimens before and after each ECAE process. Combining three re-injection routes(A, BC, and C) and three pass counts(1, 2 and 4) allowed us to fabricate 7 different PLA specimens. Thermal properties of each specimen were measured by both differential scanning calorimeter and thermo-gravimetric analyzer. Shear strains of each specimen with respect to applied loads were measured by indentation hardness tester. Field emmision scanning electron microscopy was used to observe internal microstructure of cross-section of each specimen. The observed microstructures qualitatively supported the explanation of hardness test results. Among 7 specimens, PLA-P2A showed the biggest shear strain probably due to its dense microstructure.

An Analysis on Kinematically Contributing Factors at Impact of Forehand Drive Motion in Squash (스쿼시 포핸드 드라이브 동작의 임팩트시 운동학적 주요요인 분석)

  • Lee, Kyung-Il;Lee, Hee-Kyung
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.29-39
    • /
    • 2007
  • This study were obtained elapsed time phase-by-phases, displacement, user angle, velocity and angular velocity to analyse kinematically contributing factors at impact of forehand drive motion, on targeting three male players. The results of the study were presented as follows; In the forehand drive swing, the elapsed time by phases was a total of .52 seconds: .30 seconds from backswing to impact and .22 seconds from impact to follow-through, Considering the mean change in locations of COM of each(part$\rightarrow$body segment) at impact, racket head, left shoulder, right wrist and left hip, the left-right directions(X-axis) were showm to be each $.61{\pm}.03$, $1.19{\pm}.08$, $.66{\pm}.03$, $.94{\pm}.06$, and $.45{\pm}.03m$. The displacement differences of COM of each body segment were shown to be -.57, -.05, -.33, and .16m. For the vertical direction(Z-axis), the center of mass was lowest at impact and highest at E3. For the displacement of the right wrist on the left hip, the right wrist moved to .82m to the lower direction without change in the locations of the hip from E1 from E2. When the left hip moved .02m from E2 to E3, the right wrist moved .7m in the upper direction. In respect to the velocity of each body segment, the hip and the shoulder joint accelerated and then the wrist followed. Then the right wrists of all the subjects and their racket heads showed maximum speed, and an effective swing was observed. At the angle of each part, the angle of the right wrist was the smallest at the backswing and the largest at the moment of the impact. Then it increased gradually in the follow-through section. In respect of angular velocity for subject A, the hip moved and the largest change occurred. Immediately before the impact, the subject made a swing using his right wrist, his hip, and the shoulder joint, showing the maximum value, which was judged to be effective.

Inverse Scattering Technique with Series Expanded Field of Dielectric Cylinders in Angular Spectral Domain (각스펙트럼 영역에서 전개함수 전계를 이용한 유전체 실린더에서의 역산란)

  • Kim, Ha-Chul;Choi, Hyun-Chul;Son, Hyon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.698-707
    • /
    • 1998
  • For inverse scattering problems reconstructing cross-sectional permittivity distributions of dielectric cylinders, the angular spectral inverse technique using the moment method with pulse basis function suffers from large reconstruction error even if very small noise due to requiring the higher spectral informations on the larger cross-section of the cylinder. To reduce the number of higher-order spectra, this paper presents an improved inverse technique in angular spectral domain applying the moment procedure with a series-expansion basis function for the induced field in each enlarged cross-sectional cell. By choosing adequate spectra and averaging over the enlarged cells with a suitable weighting function, the reconstruction profiles reveal fine enough to suppress the noise effect significantly.

  • PDF

Examination of the Flick-Flack Salto Backward Stretched of Success and Fall Occurs on the Balance Beam (평균대 백핸드 수완 동작 성.패 시 실수요인 규명)

  • So, Jae-Moo;Kim, Yoon-Ji;Kim, Yong-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.137-146
    • /
    • 2008
  • The purpose of this study is to examine the causes of errors from EGR posture on the balance beam, which is bending flick-flack salto backward stretched national team players through kinematic analysis, and present training methods for them so as to provide scientifically useful information to coaches and athlete. Findings from this study are summarized below. The most important factors that affect the errors in boyd center position and speed change were the speed change of left and right body centers and the horizontal and vertical speed changes. The left and right acceleration changes were greater in failed posture than in successful posture. The horizontal and vertical accelerations in E3 and E5 were the key factors that affected the backward somersault and landing. The angular speed changes which varied between success and failure were notable in head and shoulder joints. In individual results. The section when the angular speeds of head and shoulder joint must be the greatest was E4. In this section, when the body is extending instantly in a bent posture, increasing the angular speeds of head, shoulder and hip joints can improve the duration of staying in the air and the rotation radius of a somersault.

Behavioral Characteristics of the Yangsan Fault based on Geometric Analysis of Fault Slip (단층슬립의 기하분석에 의한 양산단층의 거동 특성)

  • Chang, Chun-Joong;Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.277-285
    • /
    • 2009
  • In order to assess the fault behavior by the geometric analysis of fault slip, the study area between Yangsan city and Shinkwang-myon, Pohang city along the strike of the Yangsan fault is divided into 5 domains($A{\sim}E$ domains) based on the strike change of main fault, the type of fault termination, the cyclic variation of fault zone width, deformation pattern of fault rocks and angular deviation of secondary shears. And, we would apply the relationship between the mode of fault sliding and the resultant deformation texture obtained from previous several experimental studies of simulated fault gouge to the study of the Yangsan fault. To understand sliding behavior of the fault we measured the data of fault attitude and fault slip, and analyzed relationships between the main fault and secondary Riedel shear along the Yangsan fault. The sliding behavioral patterns in each section were analyzed as followings; the straight sections of A, D and E domains were analyzed as the creeping section of stably sliding. In contrast, the curved section of B domain was analyzed as the locked section of stick-slip movement.

Performance Improvement of an INS by using a Magnetometer with Pedestrian Dynamic Constraints

  • Woyano, Feyissa;Park, Aangjoon;Lee, Soyeon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This paper proposes to improve the performance of a strap down inertial navigation system using a foot-mounted low-cost inertial measurement unit/magnetometer by configuring an attitude and heading reference system. To track position accurately and for attitude estimations, considering different dynamic constraints, magnetic measurement and a zero velocity update technique is used. A conventional strap down method based on integrating angular rate to determine attitude will inevitably induce long-term drift, while magnetometers are subject to short-term orientation errors. To eliminate this accumulative error, and thus, use the navigation system for a long-duration mission, a hybrid configuration by integrating a miniature micro electromechanical system (MEMS)-based attitude and heading detector with the conventional navigation system is proposed in this paper. The attitude and heading detector is composed of three-axis MEMS accelerometers and three-axis MEMS magnetometers. With an absolute algorithm based on gravity and Earth's magnetic field, rather than an integral algorithm, the attitude detector can obtain an absolute attitude and heading estimation without drift errors, so it can be used to adjust the attitude and orientation of the strap down system. Finally, we verify (by both formula analysis and from test results) that the accumulative errors are effectively eliminated via this hybrid scheme.

A note on "An Experimental Study on the Propulsive Characteristics of Sculls" ("선미 노의 추력발생기구 규명을 위 실험적 연구"에 관한 노트)

  • 사쿠라이다케오
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.88-92
    • /
    • 2001
  • H. Kim, B.K. Lee and C.K. Rheem have been experimentally studied to clarified the mechanism of thrust force generated by sculling motion for the propulsion of Korean small boats. The experimental investigations have been conducted under the bollard condition by installing a scull at the end of a trimming tank of towing tank. The sculling motion produced by the skilful fisherman and the resultant venerated forces have been measured in respect to the Cartesian coordinate fitted to the pivot point of the scull. ("An Experimental Study on the Propulsive Characteristics of Sculls". J. of the Soc. of Naval Arch. of Korea, Vol. 26, No. 3, 1989, pp.13-24) Through these experiments the trajectory of the blade tip and the angular displacement of the blade section have been measured as shown in Fig. 1 and 2 of this paper. And at the same time the resultant hydrodynamic force components are expressed in Fig. 3 and 4. These three dimensional data of sculling motion and generated real time force components are the unique experimental information which could clarify the thrust force generating mechanism of sculling motion. The experimental results have been reanalyzed by focusing the relation between instantaneous attack angle of blade section and the resultants real time force components. Through these investigation it is found out that the conventional imagination that the 7cull motion should be effective in generating lift force must be reconsidered because the attack angle of scull blade are too great to free from stall phenomena during the sculling operation.

  • PDF