• Title/Summary/Keyword: angular momentum

Search Result 235, Processing Time 0.026 seconds

Spin-Rotational Relaxation Study of Molecular Reorientation of Oblate Symmetric Top Molecules with Internal Extended Rotational Diffusion

  • Kim, Eun-Mi;Shin, Kook-Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.430-433
    • /
    • 1989
  • Molecular reorientation of oblate symmetric top molecules in the presence of internal rotation is investigated and an analytic expression for the spin-rotational relaxation rate of a nucleus attached to the internal rotor is obtained as a function of the internal angular momentum correlation time. The overall reorientation of the symmetric top is treated by the anisotropic rotational diffusion and the internal rotation is assumed to undergo modified extended rotational diffusion. The result is compared with the previous work for the prolate symmetric top molecule and it is shown that both results reduce to the same expression in the spherical top limit.

Rotational State Distribution of NO after Collisions with Fast Hydrogen Atom

  • Kim, Yu Hang;David A. Micha
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.436-438
    • /
    • 1995
  • Based on the collisional time-correlation function approach a general analytical expression has been derived for the double differential cross-section with respect to the scattering angle and the final rotational energy, which can be applied to molecules with non-zero electronic orbital angular momentum after collision with fast hydrogen atoms. By integrating this expression another very simple expression, which gives the final rotational distribution as a function of the rotational quantum number, has also been derived. When this expression is applied to NO(2Π1/2, v'=1) and NO(2Π3/2, v'=1, 2, 3), it can reproduce the experimental rotational distribution after collision with fast H atom very well. The average rotational quantum number and average rotational energy using this expression are also in good agreement with those deduced from the experimental distributions.

ELECTRONIC STRUCTURES AND MAGNETIC PROPERTIES OF HEUSLER COMPOUNDS: XMnSb (X=Ni, Pd, and Pt)

  • Youn, S.J.;Min, B.I.;Jang, Y.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.749-752
    • /
    • 1995
  • Electronic structures of the Heusler compounds, XMnSb (X=Ni, Pd, and Pt) are investigated systematically by using the linearized muffiu-tin orbital (LMTO) band method. LMTO band calculations yield that, by including the spinorbit interactions, the NiMnSb and PtMnSb are half-metallic, while PdMnSb is normal metallic at the experimental lattice constant. The effect of the spin-orbit interaction is substantial in PtMnSb, in contrast to NiMnSb and PdMnSb. The calculated X d and Mn 3d angular momentum projected local density of states's reveal that the hybridization between the Mn 3d X d states increases from X = Pt to Pd and Ni.

  • PDF

Vibration-Rotation Coupling in a Quasilinear Symmetric Triatomic Molecule

  • Lee, Jae-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.228-236
    • /
    • 1994
  • The effect of the vibration mode coupling induced by the vibration-rotation interaction on total energy was investigated for the states with zero total angular momentum(J=0) in a quasilinear symmetric triatomic molecule of $AB_2$ type using a model potential function with a slight potential barrier to linearity. It is found that the coupling energy becomes larger for the levels of bend and asymmetric stretch modes and smaller for symmetric stretch mode as the excitation of the vibrational modes occurs. The results for the real molecule of $CH_2^+$, which is quasilinear, generally agree with the results for the model potential function in that common mode selective dependence of coupling energy is exhibited in both cases. The differences between the results for the model and real potential function in H-C-H system are analyzed and explained in terms of heavy mixing of the symmetric stretch and bend mode in excited vibrational states of the real molecule of $CH_2^+$. It is shown that the vibrational mode coupling in the potential energy function is primarily responsible for the broken nodal structure and chaotic behavior in highly excited levels of $CH_2^+$ for J= 0.

Spin-polarization and x-ray magnetic circular dichroism in GaAs

  • Zohar, S.;Ryan, P.J.;Kim, J.W.;Keavney, D.J.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1182-1184
    • /
    • 2018
  • The combination of angular spin momentum with electronics is a promising successor to charge-based electronics. The conduction bands in GaAs may become spin-polarized via optical spin pumping, doping with magnetic ions, or induction of a moment with an external magnetic field. We investigated the spin populations in GaAs with x-ray magnetic circular dichroism for each of these three cases. We find strong anti-symmetric lineshapes at the Ga $L_3$ edge indicating conduction band spin splitting, with differences in line width and amplitude depending on the source of spin polarization.

Bar Formation and Evolution in Disk Galaxies with Classical Bulges

  • Seo, Woo-Young;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.37.2-37.2
    • /
    • 2019
  • To study the effects of central mass concentration on the formation and evolution of galactic bars, we run fully self-consistent simulations of Milky Way-sized, isolated galaxies with initial classical bulges. We let the mass of a classical bulge mass less than 20% of the total disk mass, and vary the central concentration of a dark matter halo. We find that both classical bulge and halo concentration delay the bar formation and weaken the bar strength. The presence of a bulge increases the initial rotational velocity near the center and hence the bar pattern speed. Bars in galaxies with a more concentrated halo slowdown relatively rapidly as they lose their angular momentum through interaction with the halo. In some of our models, bars do not experience slowdown at the expense of the decrease in their moment of inertia as the bar evolves, with the resulting pattern speed similar to that of the bar in the Milky Way.

  • PDF

Experimental study on the spray characteristics of a dual-manifold liquid-centered swirl coaxial injector

  • Lee, Ingyu;Yoon, Jungsoo;Park, Gujeong;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.444-453
    • /
    • 2014
  • A throttleable rocket engine enables operational possibilities such as the docking of spacecraft, maneuvering in a certain orbit and landing on a planet's surface, altitude control, and entrance to atmosphere-less planets. Thus, throttling methods have long been researched. However, dual-manifold injectors, which represent one throttling method, have been investigated less than others. In this study, dual-manifold and single-manifold injectors were compared to determine the characteristics of dual-manifold injectors. Also, the effects of gas injection were investigated with various F/O ratios. To investigate the characteristics, mass flow rate, spray pattern, spray angle, and droplet size were measured. The spray angle and droplet size were captured by indirect photography. About 30 images were taken to assess the spray patterns and spray angle. Also, 700 images were analyzed to understand the droplet distribution and targeting area, moving to the right from the centerline with 1.11-cm intervals. The droplet size was obtained from an image processing procedure. From the results, the spray angle showed two transition regions, due to swirl momentum in the swirl chamber regardless of the F/O ratio. The droplet size showed similar trends in both dual-manifold and single-manifold injectors except in the low mass flow rate region. In the case of the dual- manifold injector, the spray cone was not fully developed in the low mass flow rate region due to low angular momentum in the swirl chamber.

Visualization and Image Processing for Measurement of Propagational Velocity of Shear Front (유동장의 이동속도측정을 위한 가시화 및 영상처리 방안)

  • Kim Jae-Won;Han Sang-Hoon;Ahn Eun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1322-1328
    • /
    • 2005
  • The circulation flows passing through the Ekman boundary layer on the rotating disk and transfer the angular momentum into the interior region of the container. Consequently, the circulation enhances the momentum transfer and the interior fluid is divided by a propagating shear front. This investigation focuses on computer vision and image processing technique for analysis of Non-Newtonian Fluids. To visualize marching velocity shear front for the transient flow, a particular shaped particles and light are used. To validate the proposed method, quantitative image are compared with the optical data acquired by a direct measurement of LDV (Laser Doppler Velocimetry).

  • PDF

The Process of the Interjoint and Intersegmental Coordination of Side Kick Motion in Taekwondo (태권도 옆차기 동작의 인체관절과 분절사이의 협응 과정)

  • Yoon, Chang-Jin;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.179-189
    • /
    • 2008
  • The purpose of this study was to investigate interjoint and intersegmental coordination of lower segments in skill process. For the investigation, we examined the difference of resultant linear velocity of segments and angle vs angle graph. Novice subjects were 9 male middle school students who have never been experienced a taekwondo. We analyzed kinematic variables of Side Kick motion through videographical analysis. The conclusions were as follows. 1. Examining the graph of novice subjects' maximal resultant linear velocity of the thigh, shank, and foot segment, as it gets closer to the end of the training, the maximal resultant linear velocity in each segment increases which can be assumed to be a result of the effective momentum transfer between adjacent segments. 2 This research showed a sequential transfer from trunk, to thigh, and then to shank as it gets closer to the end of learning at intersegment angular velocity, and it also showed pattern of throwlike motion and pushlike motion. 3. In three dimension of flexion-extension, adduction-abduction and internal-external rotation of the thigh and shank segment, the angle-angle diagram of knee joint and of hip joint showed that dynamic change was indicated at the beginning of learning but stable coordination pattern was indicated like skilled subject as novice subjects became skilled.

Computing turbulent far-wake development behind a wind turbine with and without swirl

  • Hu, Yingying;Parameswaran, Siva;Tan, Jiannan;Dharmarathne, Suranga;Marathe, Neha;Chen, Zixi;Grife, Ronald;Swift, Andrew
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.17-26
    • /
    • 2012
  • Modeling swirling wakes is of considerable interest to wind farm designers. The present work is an attempt to develop a computational tool to understand free, far-wake development behind a single rotating wind turbine. Besides the standard momentum and continuity equations from the boundary layer theory in two dimensions, an additional equation for the conservation of angular momentum is introduced to study axisymmetric swirl effects on wake growth. Turbulence is simulated with two options: the standard ${\kappa}-{\varepsilon}$ model and the Reynolds Stress transport model. A finite volume method is used to discretize the governing equations for mean flow and turbulence quantities. A marching algorithm of expanding grids is employed to enclose the growing far-wake and to solve the equations implicitly at every axial step. Axisymmetric far-wakes with/without swirl are studied at different Reynolds numbers and swirl numbers. Wake characteristics such as wake width, half radius, velocity profiles and pressure profiles are computed. Compared with the results obtained under similar flow conditions using the computational software, FLUENT, this far-wake model shows simplicity with acceptable accuracy, covering large wake regions in far-wake study.