• 제목/요약/키워드: angular change

검색결과 256건 처리시간 0.025초

스타트 블록의 각도에 따른 하지의 각운동량 분석 (Analysis of the angular momentum on the lower extremity by change of starting block angles)

  • 신성휴;김태완;권문석;고석곤;박기자
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.165-175
    • /
    • 2004
  • The aim of this study is to show the effect of starting block angle on the starting motion of sprinters using a crouching start. After installing starting blocks on forced platform, and having four highly comparative sprinters use the starting blocks, I analyzed the angular momentum of a crouching start. From the results of the analysis, the following conclusions could be drawn: There were differences of angular momentum both in body's X, Y, and Z axes and in the thighs' X axes, but not in the pelvis and lower legs. As to the general change of block angle, we noticed that an angular momentum for each segments was higher at an angle of 50 to 55 degrees.

이중 증분 엔코더에 기초한 초정밀 회전각도 변위 검출 알고리즘 개발 (Development of an Algorithm for Detecting Angular Bisplacement with High Accuracy Based on the Dual-Encoder)

  • 이세한
    • 한국정밀공학회지
    • /
    • 제25권8호
    • /
    • pp.29-36
    • /
    • 2008
  • An optical rotary encoder is easy to implement for automation system applications. In particular, the output of the encoder has a digital form pulse, which is also easy to be connected to a popular digital controller. By using an incremental encoder and a counting device, it is easy to measure angular displacement, as the number of the output pulses is proportional to the rotational displacement. This method can only detect the angular placement once a pulse signal comes out of the encoder. The angular displacement detection period is strongly subject to the change of the angular displacement in case of ultimate low velocity range. They have ultimate long detection period or cannot even detect angular displacement at near zero velocity. This paper proposes an algorithm for detecting angular displacement by using a dual encoder system with two encoders of normal resolution. The angular displacement detecting algorithm is able to keep detection period moderately at near zero velocity and even detect constant angular displacement within nominal period. It is useful for motion control applications in case of changing rotational direction at which there occurs zero velocity. In this paper, various experimental results are shown for the angular displacement detection algorithm.

핸들조향속도를 고려한 4WS 제어방법에 관한 연구 (A Study on the 4WS Control Method with the Effect of Steering Wheel Angular Velocity)

  • 이영화;김석일;김대영;김동룡
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.168-175
    • /
    • 1996
  • Except the collision avoidance performance related to the rapid lane change, the 4WS vehicle has better dynamic stability and handling performance than the conventional 2WS vehicle which has close relation with the driver's safety, a 4WS conrol method with the effect of steering wheel angular velocity is proposed based on the fact that the driver steers abruptly the steering wheel to avoid the collision. And the effects of the proposed 4WS control method are investigated on the dynamic stability and handling performance by using the ISO lane change test code.

  • PDF

무인 달착륙선의 동력하강단계에서 자세각속도 영향에 따른 최적화 착륙궤적 분석 (Analysis of Optimal Landing Trajectory in Attitude Angular Velocity Influence at Powered Descent Phase of Robotic Lunar Lander)

  • 박재익;류동영
    • 한국항공우주학회지
    • /
    • 제46권5호
    • /
    • pp.402-409
    • /
    • 2018
  • 이 논문에서는 무인 달착륙 임무를 위해 고려하고 있는 달착륙 시나리오를 제안하고 제안된 시나리오를 기반으로 동력하강단계에서의 최적화 착륙궤적을 구현한다. 동력하강단계에서 달착륙선의 자세 변화는 사용 연료량뿐만 아니라 영상기반 항법의 센서 운용에도 영향을 주므로 자세 변화가 급격하게 이루어지지 않도록 자세각속도를 최적제어 가격함수에 포함하고 이때 자세각속도의 영향을 조절하는 가중치가 최적화 착륙궤적에 미치는 영향을 분석한다. 분석된 결과를 바탕으로 연료 사용을 최소화하고 안정된 자세 변화를 갖도록 최적화 착륙궤적을 설계할 수 있는 적절한 가중치를 제시한다.

공명각 및 반사광 측정 모드에서 다양한 물질 구성의 표면 플라즈몬 공명 센서 칩의 민감도 특성 (A Study on the Sensitivity of Surface Plasmon Resonance Sensor Chips with Various Material Configurations in Angle and Intensity Detection Modes)

  • 손영수
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.402-407
    • /
    • 2017
  • Characteristics of various material surface plasmon resonance (SPR) chips were investigated in angular interrogation mode and intensity interrogation mode. Among five metals, silver (Ag), gold (Au), copper (Cu), chromium (Cr) and titanium (Ti), three metals, Ag, Au and Cu were paid attention to since their characteristics can be easily analyzed in angular interrogation mode by investigating the change of their reflectance curves according to refractive index change from 1.331 to 1.335. Most of SPR chips with various configurations showed the similar property in angular interrogation mode. The application of the SPR chip made of Ag, Au and Cu or their combinations depends on their reflectance properties. In intensity interrogation mode, the operation range may be limited since the variation of the intensity was not linearly related to refractive index change ranging from 1.331 to 1.335. However, the SPR chip containing high ratio of Ag may be applicable to high sensitive detection due to their sharp reflectance curves in intensity interrogation mode.

구순구개열 환자의 Le Fort I 골절단술 후 상악골의 위치적 안정성에 관한 연구 ; 예비보고 (Skeletal Stability after Le Fort I Osteotomy in the Cleft Patients; Preliminary Report)

  • 김명진;유호석;김종원;김규식
    • 대한구순구개열학회지
    • /
    • 제2권1_2호
    • /
    • pp.15-22
    • /
    • 1999
  • It is well known that the postoperative skeletal instability after Le Fort I osteotomy for advancement of maxilla in the cleft patients is one of the major surgical problems. So we had tried to compare the amount of relapse after Le Fort I advancement surgery in the horizontal and vertical positional change, angular change of reference points between cleft patients and non-cleft patients. Longitudinal records of 10 consecutive cleft patients (test group) and 20 non-cleft patients (control group) were analyzed. Lateral cephalograms were taken preoperatively, immediately postoperatively, and 2, 6, 12 months postoperatively. We measured horizontal and vertical changes (ANS, PNS, AI) and angular change (SNA) of the reference points and lines. In the test group, horizontal relapse of ANS, PNS, AI point are 36.4%, 37.5%, 32.0% respectively at 12 months postoperatively. The vertical relapse of ANS, PNS, AI are 25.3%, 32.3%, 39.1% respectively at 12 months postoperatively. The angular change of SNA is 33.6% at 12 months postoperatively. In the control group, horizontal relapse of ANS, PNS, AI point are 23.8%, 30.2%, 21.7% respectively at 12 months postoperatively. The vertical relapse of ANS, PNS, AI are 22.7%, 27.3%, 25.1% respectively at 12 months postoperatively. The angular change of SNA is 22.2% at 12 months postoperatively. The cleft patients have a larger tendency of skeletal and dental relapse compared with non-cleft patients after Le Fort I surgery. So the oral and maxillofacial surgeons must keep in mind these facts in order to minimize the relapse phenomenon from the beginning of surgical planning to postoperative care.

  • PDF

Clinical Significance of Radiological Stability in Reconstructed Thoracic and Lumbar Spine Following Vertebral Body Resection

  • Sung, Sang-Hyun;Chang, Ung-Kyu
    • Journal of Korean Neurosurgical Society
    • /
    • 제56권4호
    • /
    • pp.323-329
    • /
    • 2014
  • Objective : Vertebral body replacement following corpectomy in thoracic or lumbar spine is performed with titanium mesh cage (TMC) containing any grafts. Radiological changes often occur on follow-up. This study investigated the relationship between the radiological stability and clinical symptoms. Methods : The subjects of this study were 28 patients who underwent corpectomy on the thoracic or lumbar spine. Their medical records and radiological data were retrospectively analyzed. There were 23 cases of tumor, 2 cases of trauma, and 3 cases of infection. During operation, spinal reconstruction was done with TMC and additional screw fixation. We measured TMC settlement in sagittal plane and spinal angular change in coronal and sagittal plane at postoperative one month and last follow-up. Pain score was also checked. We investigated the correlation between radiologic change and pain status. Whether factors, such as the kind of graft material, surgical approach, and fusion can affect the radiological stability or not was analyzed as well. Results : Mean follow-up was 23.6 months. During follow-up, $2.08{\pm}1.65^{\circ}$ and $6.96{\pm}2.08^{\circ}$ of angular change was observed in coronal and sagittal plane, respectively. A mean of cage settlement was $4.02{\pm}2.83mm$. Pain aggravation was observed in 4 cases. However, no significant relationship was found between spinal angular change and pain status (p=0.518, 0.458). Cage settlement was seen not to be related with pain status, either (p=0.644). No factors were found to affect the radiological stability. Conclusion : TMC settlement and spinal angular change were often observed in reconstructed spine. However, these changes did not always cause postoperative axial pain.

진동하는 Taylor-Couette 유동에 대한 수치적 연구 (NUMERICAL STUDY OF MODULATED TAYLOR-COUETTE FLOW)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.32-39
    • /
    • 2010
  • In this study, we consider Taylor-Couette flow with the outer cylinder at rest and the inner one oscillating with a mean angular velocity. Varying the mean angular velocity, amplitude and frequency of the oscillation, we investigate the characteristics of modulated Taylor vortices. At a constant mean angular velocity, Taylor vortices intensify as the amplitude increases and frequency decreases. The axial wavenumber is calculated by spectral analysis. When the frequency varies, the axial wavenumber does not change at a constant mean angular velocity and amplitude. But, the axial wavenumber increases, as the mean angular velocity increases.

EFFECTS OF ANGULAR VELOCITY AND BOUNDARY TEMPERATURE TO THERMO-ELASTIC CHARACTERISTICS ON HOMOGENEOUS CIRCULAR DISKS SUBJECTING TO CONTACT FORCES

  • GO, JAEGWI
    • Journal of applied mathematics & informatics
    • /
    • 제39권1_2호
    • /
    • pp.31-43
    • /
    • 2021
  • A homogeneous circular disk undergoing a contact force is considered to investigate the thermo-elastic characteristics, and the inquiry is based on the variations of outer surface temperature and angular velocity. The intensity of stresses grows with the increase of outer surface temperature, and the circumferential strain reacts more sensitively to the change of outer surface temperature than the radial strain. In general, higher angular velocity produces; (i) larger expansion in the radial direction, (ii) smaller displacement in the circumferential, (iii) diminished intensity in the stresses. It is demonstrated that outer surface temperature and angular velocity are critical factors in the determination of thermo-elastic characteristics of homogeneous circular disks subjecting to a contact force. The results obtained can be applied on the design of a homogeneous circular cutter to promote proper and reliable thermos-elastic characteristics in service by the proper operation of these parameters.

세단뛰기 지지국면 시 사지의 각운동량과 운동수행과의 관계 (The Relationship between the Angular Momentum of the Limbs and the Performance during Support Phase of the Triple Jump)

  • 류재균;여홍철
    • 한국운동역학회지
    • /
    • 제14권1호
    • /
    • pp.65-81
    • /
    • 2004
  • The purposes of this study were to determine the functions of actions of the limbs during each of the three support phases of the triple jump and their relationships with the performance of the triple jump. Four elite male triple jumpers were participated as subjects. The Pearson product moment correlation coefficient were used to determine and compare the relationships between the change in each component of the normalized angular momentum of the whole body about center of gravity and the actions of the extremities during different support phases. A level of significance at $\alpha$=.05 was set. After analyzing the angular momentum and correlation during support phase of the hop, step, and jump, the following findings are obtained: The actions of the arms created a side-somersaulting angular momentum about the whole body center of gravity toward the side of the free leg during the support phase of the step, and a somersaulting angular momentum about the whole body center of gravity during each support phase. The action of the free leg created a somersaulting angular momentum about the whole body center of gravity during the support phases of the hop and step.