• Title/Summary/Keyword: angle-only data

Search Result 337, Processing Time 0.025 seconds

Comparison between Chronic Ulnar and Radial Collateral Ligament Repairs in the Metacarpophalangeal Joint of the Thumb (무지 중수지 관절의 만성 파열된 척측, 요측 측부 인대 봉합술 후 결과 비교)

  • Lee, Sanglim;Ha, Jiyun;Kim, Ji Yeong;Jeon, Suk Ha
    • Archives of Hand and Microsurgery
    • /
    • v.23 no.4
    • /
    • pp.254-261
    • /
    • 2018
  • Purpose: Favorable results have been reported after the direct repair of chronic ulnar collateral ligament ruptures of the thumb metacarpophalangeal (MP) joint, but the results for radial ligament seem rather controversial. The purpose of this study is to compare the results of ligament reattachment between chronic rupture of the ulnar and the radial collateral ligament (RCL) of the joint. Methods: We reviewed retrospectively the radiologic and clinical results of ligament reattachment with suture anchors for chronic (more than 6 weeks) rupture of the collateral ligament of the thumb MP joint with averaged 22-month follow-up. The data between 6 radial and 8 ulnar ligament repairs were compared statistically. Results: The average of postoperative ulnar deviation angle was $13.3^{\circ}$ in radial ligament and $2.0^{\circ}$ in ulnar ligament (p=0.020) in the last follow-up plain X-ray. Postoperative ligament instability was positive in 4 out of the 6 radial repairs and no case with instability was observed in ulnar ligament. In postoperative follow-up, sustained joint subluxation was observed only in 2 out of the 6 radial repairs. Conclusion: The delayed repair of the RCL of the thumb MP joint resulted in less favorable outcomes and ligament instability was observed postoperatively in more than half of the cases.

Shape and Spacing Effects on Curvy Twin Sail for Autonomous Sailing Drone (무인 해상 드론용 트윈 세일의 형태와 간격에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.931-941
    • /
    • 2020
  • There is a growing interest this paper for ocean sensing where autonomous vehicles can play an essential role in assisting engineers, researchers, and scientists with environmental monitoring and collecting oceanographic data. This study was conducted to develop a rigid sail for the autonomous sailing drone. Our study aims to numerically analyze the aerodynamic characteristics of curvy twin sail and compare it with wing sail. Because racing regulations limit the sail shape, only the two-dimensional geometry (2D) was open for an optimization. Therefore, the first objective was to identify the aerodynamic performance of such curvy twin sails. The secondary objective was to estimate the effect of the sail's spacing and shapes. A viscous Navier-Stokes flow solver was used for the numerical aerodynamic analysis. The 2D aerodynamic investigation is a preliminary evaluation. The results indicated that the curvy twin sail designs have improved lift, drag, and driving force coefficient compared to the wing sails. The spacing between the port and starboard sails of curvy twin sail was an important parameter. The spacing is 0.035 L, 0.07 L, and 0.14 L shows the lift coefficient reduction because of dramatically stall effect, while flow separation is improved with spacing is 0.21 L, 0.28 L, and 0.35 L. Significantly, the spacing 0.28 L shows the maximum high pressure at the lower area and the small low pressure area at leading edges. Therefore, the highest lift was generated.

Development of Score-based Vegetation Index Composite Algorithm for Crop Monitoring (농작물 모니터링을 위한 점수기반 식생지수 합성기법의 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1343-1356
    • /
    • 2022
  • Clouds or shadows are the most problematic when monitoring crops using optical satellite images. To reduce this effect, a composite algorithm was used to select the maximum Normalized Difference Vegetation Index (NDVI) for a certain period. This Maximum NDVI Composite (MNC) method reduces the influence of clouds, but since only the maximum NDVI value is used for a certain period, it is difficult to show the phenomenon immediately when the NDVI decreases. As a way to maintain the spectral information of crop as much as possible while minimizing the influence of clouds, a Score-Based Composite (SBC) algorithm was proposed, which is a method of selecting the most suitable pixels by defining various environmental factors and assigning scores to them when compositing. In this study, the Sentinel-2A/B Level 2A reflectance image and cloud, shadow, Aerosol Optical Thickness(AOT), obtainging date, sensor zenith angle provided as additional information were used for the SBC algorithm. As a result of applying the SBC algorithm with a 15-day and a monthly period for Dangjin rice fields and Taebaek highland cabbage fields in 2021, the 15-day period composited data showed faster detailed changes in NDVI than the monthly composited results, except for the rainy season affected by clouds. In certain images, a spatially heterogeneous part is seen due to partial date-by-date differences in the composited NDVI image, which is considered to be due to the inaccuracy of the cloud and shadow information used. In the future, we plan to improve the accuracy of input information and perform quantitative comparison with MNC-based composite algorithm.

Effect of Fiber Orientation and Fiber Contents on the Tensile Strength in Fiber-reinforced Thermoplastic Composites (섬유배향과 섬유함유량이 섬유강화 열가소성수지 복합재료의 인장강도에 미치는 영향)

  • Kim, Jin-Woo;Lee, Dong-Gi
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.13-19
    • /
    • 2007
  • Fiber-reinforced thermoplastic composites not only approach almost near to the strength of thermosetting composite but also has excellent productivity, recycling property, and impact resistance, which are pointed as weaknesses of thermosetting composites. The study for strength calculation of one direction fiber-reinforced thermoplastic composites and the study measuring precisely fiber orientation distribution were presented. Need the systematic study for the data base that can predict mechanical properties of composite material and fiber orientation distribution by the fiber content ratio was not constructed. Therefore, this study was investigated what affect the fiber content ratio and fiber orientation distribution have on the strength of composites. Fiber-reinforced thermoplastic composites by changing fiber orientation distribution and the fiber content ratio were made. Tensile strength ratio of $0^{\circ}$ direction of fiber-reinforced composites increased being proportional the fiber content and fiber orientation function as change from isotropy(J=0) to anisotropy(J=1). But, tensile strength ratio of $90^{\circ}$ direction by separation of fiber filament decreased when tensile load is imposed fur width direction of reinforcement fiber length direction.

Development of High-Resolution Fog Detection Algorithm for Daytime by Fusing GK2A/AMI and GK2B/GOCI-II Data (GK2A/AMI와 GK2B/GOCI-II 자료를 융합 활용한 주간 고해상도 안개 탐지 알고리즘 개발)

  • Ha-Yeong Yu;Myoung-Seok Suh
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1779-1790
    • /
    • 2023
  • Satellite-based fog detection algorithms are being developed to detect fog in real-time over a wide area, with a focus on the Korean Peninsula (KorPen). The GEO-KOMPSAT-2A/Advanced Meteorological Imager (GK2A/AMI, GK2A) satellite offers an excellent temporal resolution (10 min) and a spatial resolution (500 m), while GEO-KOMPSAT-2B/Geostationary Ocean Color Imager-II (GK2B/GOCI-II, GK2B) provides an excellent spatial resolution (250 m) but poor temporal resolution (1 h) with only visible channels. To enhance the fog detection level (10 min, 250 m), we developed a fused GK2AB fog detection algorithm (FDA) of GK2A and GK2B. The GK2AB FDA comprises three main steps. First, the Korea Meteorological Satellite Center's GK2A daytime fog detection algorithm is utilized to detect fog, considering various optical and physical characteristics. In the second step, GK2B data is extrapolated to 10-min intervals by matching GK2A pixels based on the closest time and location when GK2B observes the KorPen. For reflectance, GK2B normalized visible (NVIS) is corrected using GK2A NVIS of the same time, considering the difference in wavelength range and observation geometry. GK2B NVIS is extrapolated at 10-min intervals using the 10-min changes in GK2A NVIS. In the final step, the extrapolated GK2B NVIS, solar zenith angle, and outputs of GK2A FDA are utilized as input data for machine learning (decision tree) to develop the GK2AB FDA, which detects fog at a resolution of 250 m and a 10-min interval based on geographical locations. Six and four cases were used for the training and validation of GK2AB FDA, respectively. Quantitative verification of GK2AB FDA utilized ground observation data on visibility, wind speed, and relative humidity. Compared to GK2A FDA, GK2AB FDA exhibited a fourfold increase in spatial resolution, resulting in more detailed discrimination between fog and non-fog pixels. In general, irrespective of the validation method, the probability of detection (POD) and the Hanssen-Kuiper Skill score (KSS) are high or similar, indicating that it better detects previously undetected fog pixels. However, GK2AB FDA, compared to GK2A FDA, tends to over-detect fog with a higher false alarm ratio and bias.

CRANIOFACIAL STRUCTURE AND ARCH DIMENSION OF ADULT CLASS III MALOCCLUSION (성인 III급 부정교합자의 악안면골격구조 및 치열궁형태에 관한 연구)

  • Lee, Dong-Geun;Suhr, Cheong
    • The korean journal of orthodontics
    • /
    • v.27 no.3 s.62
    • /
    • pp.359-372
    • /
    • 1997
  • This study was conducted to discern differences of craniofacial, dentoalveolar structure and model measurements between sex and between class n openbite group and non-openbite group. The sample consisted of 49 adult patients with class Il malocclusion. 24 linear measurements, 22 angular measurements and 12 ratios were selected in lateral cephalometry. Also, arch width, length, anterior crowding, average molar relation were measured or calculated in diagnostic model. The data were evaluated by t-test and multiple discriminant analysis. The results were as follows, 1. Most linear measurements, with the exception of MnBL and AUDH, were significantly larger in male(p<0.05). but, intermaxillary relations and spatial position of maxilla and mandible relative to cranial base were not different for both sex. 2. With the exception of upper and lower anterior crowding, lower arch width, upper arch length, AMR, male exhibited significantly larger measurements in model analysis (p<0.05). 3. Size differences of maxilla and mandible between openbite and non-openbite group were not significant(p>0.05). but openbite group showed significantly increased genial angle(p<0.05), FH-CoGo(p<0.01), FH-NA(p<0.01) and FH-NB, FH-NPog (p<0.05). 4. ALFH and PUDH were larger(p<0.05) in openbite group. this result served as compensation for the spatial position of mandible relative to cranial base. AUPUDH (p<0.001) and ALPLDH(p<0.05) were lower in openbite group. upper anterior crowding was the only measurement which showed difference between openbite and non-openbite group(p<0.05). 5. For the purpose of classifying adult class n openbite and non-openbite group, multiple discriminant analysis was done genial angle, ALPLDH, AUPUDH, FH-NA were included in multiple discriminant equation. 39 cases($92.86\%$) were correctly classified when applied to the sample used in this study.

  • PDF

Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications (텅스텐 화학적-기계적 연마 공정에서 부식방지막이 증착된 금속 컨디셔너 표면의 전기화학적 특성평가)

  • Cho, Byoung-Jun;Kwon, Tae-Young;Kim, Hyuk-Min;Venkatesh, Prasanna;Park, Moon-Seok;Park, Jin-Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Chemical Mechanical Planarization (CMP) is a polishing process used in the microelectronic fabrication industries to achieve a globally planar wafer surface for the manufacturing of integrated circuits. Pad conditioning plays an important role in the CMP process to maintain a material removal rate (MRR) and its uniformity. For metal CMP process, highly acidic slurry containing strong oxidizer is being used. It would affect the conditioner surface which normally made of metal such as Nickel and its alloy. If conditioner surface is corroded, diamonds on the conditioner surface would be fallen out from the surface. Because of this phenomenon, not only life time of conditioners is decreased, but also more scratches are generated. To protect the conditioners from corrosion, thin organic film deposition on the metal surface is suggested without requiring current conditioner manufacturing process. To prepare the anti-corrosion film on metal conditioner surface, vapor SAM (self-assembled monolayer) and FC (Fluorocarbon) -CVD (SRN-504, Sorona, Korea) films were prepared on both nickel and nickel alloy surfaces. Vapor SAM method was used for SAM deposition using both Dodecanethiol (DT) and Perfluoroctyltrichloro silane (FOTS). FC films were prepared in different thickness of 10 nm, 50 nm and 100 nm on conditioner surfaces. Electrochemical analysis such as potentiodynamic polarization and impedance, and contact angle measurements were carried out to evaluate the coating characteristics. Impedance data was analyzed by an electrical equivalent circuit model. The observed contact angle is higher than 90o after thin film deposition, which confirms that the coatings deposited on the surfaces are densely packed. The results of potentiodynamic polarization and the impedance show that modified surfaces have better performance than bare metal surfaces which could be applied to increase the life time and reliability of conditioner during W CMP.

A Mobile Landmarks Guide : Outdoor Augmented Reality based on LOD and Contextual Device (모바일 랜드마크 가이드 : LOD와 문맥적 장치 기반의 실외 증강현실)

  • Zhao, Bi-Cheng;Rosli, Ahmad Nurzid;Jang, Chol-Hee;Lee, Kee-Sung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 2012
  • In recent years, mobile phone has experienced an extremely fast evolution. It is equipped with high-quality color displays, high resolution cameras, and real-time accelerated 3D graphics. In addition, some other features are includes GPS sensor and Digital Compass, etc. This evolution advent significantly helps the application developers to use the power of smart-phones, to create a rich environment that offers a wide range of services and exciting possibilities. To date mobile AR in outdoor research there are many popular location-based AR services, such Layar and Wikitude. These systems have big limitation the AR contents hardly overlaid on the real target. Another research is context-based AR services using image recognition and tracking. The AR contents are precisely overlaid on the real target. But the real-time performance is restricted by the retrieval time and hardly implement in large scale area. In our work, we exploit to combine advantages of location-based AR with context-based AR. The system can easily find out surrounding landmarks first and then do the recognition and tracking with them. The proposed system mainly consists of two major parts-landmark browsing module and annotation module. In landmark browsing module, user can view an augmented virtual information (information media), such as text, picture and video on their smart-phone viewfinder, when they pointing out their smart-phone to a certain building or landmark. For this, landmark recognition technique is applied in this work. SURF point-based features are used in the matching process due to their robustness. To ensure the image retrieval and matching processes is fast enough for real time tracking, we exploit the contextual device (GPS and digital compass) information. This is necessary to select the nearest and pointed orientation landmarks from the database. The queried image is only matched with this selected data. Therefore, the speed for matching will be significantly increased. Secondly is the annotation module. Instead of viewing only the augmented information media, user can create virtual annotation based on linked data. Having to know a full knowledge about the landmark, are not necessary required. They can simply look for the appropriate topic by searching it with a keyword in linked data. With this, it helps the system to find out target URI in order to generate correct AR contents. On the other hand, in order to recognize target landmarks, images of selected building or landmark are captured from different angle and distance. This procedure looks like a similar processing of building a connection between the real building and the virtual information existed in the Linked Open Data. In our experiments, search range in the database is reduced by clustering images into groups according to their coordinates. A Grid-base clustering method and user location information are used to restrict the retrieval range. Comparing the existed research using cluster and GPS information the retrieval time is around 70~80ms. Experiment results show our approach the retrieval time reduces to around 18~20ms in average. Therefore the totally processing time is reduced from 490~540ms to 438~480ms. The performance improvement will be more obvious when the database growing. It demonstrates the proposed system is efficient and robust in many cases.

A Study on the Variation of Daily Urban Water Demand Based on the Weather Condition (기후조건에 의한 상수도 일일 급수량의 변화에 관한 연구)

  • Lee, Gyeong-Hun;Mun, Byeong-Seok;Eom, Dong-Jo
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.147-158
    • /
    • 1995
  • The purpose of this study is to establish a method of estimating the daily urban water demand using statistical model. This method will be used for the development of the efficient management and operation of the water supply facilities. The data used were the daily urban water use, the population, the year lapse and the weather conditions such as temperature, precipitation, relative humidity, etc. Kwangju city was selected for the case study area. The raw data used in this study were rearranged either by month or by season for the purpose of analysis, and the statistical analysis was applied to the data to obtain the regression model. As a result, the multiple linear regression model was developed to estimate the daily urban water use based on the seather condition. The regression constant and the model coefficients were determined for each month of a year. The accuracy of the model was within 3% of average error and within 10% of maximum error. The developed model was found to be useful to the practical operation and management of the water supply facilities.

  • PDF

Evaluation of Sensitivity and Retrieval Possibility of Land Surface Temperature in the Mid-infrared Wavelength through Radiative Transfer Simulation (복사전달모의를 통한 중적외 파장역의 민감도 분석 및 지표면온도 산출 가능성 평가)

  • Choi, Youn-Young;Suh, Myoung-Seok;Cha, DongHwan;Seo, DooChun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1423-1444
    • /
    • 2022
  • In this study, the sensitivity of the mid-infrared radiance to atmospheric and surface factors was analyzed using the radiative transfer model, MODerate resolution atmospheric TRANsmission (MODTRAN6)'s simulation data. The possibility of retrieving the land surface temperature (LST) using only the mid-infrared bands at night was evaluated. Based on the sensitivity results, the LST retrieval algorithm that reflects various factors for night was developed, and the level of the LST retrieval algorithm was evaluated using reference LST and observed LST. Sensitivity experiments were conducted on the atmospheric profiles, carbon dioxide, ozone, diurnal variation of LST, land surface emissivity (LSE), and satellite viewing zenith angle (VZA), which mainly affect satellite remote sensing. To evaluate the possibility of using split-window method, the mid-infrared wavelength was divided into two bands based on the transmissivity. Regardless of the band, the top of atmosphere (TOA) temperature is most affected by atmospheric profile, and is affected in order of LSE, diurnal variation of LST, and satellite VZA. In all experiments, band 1, which corresponds to the atmospheric window, has lower sensitivity, whereas band 2, which includes ozone and water vapor absorption, has higher sensitivity. The evaluation results for the LST retrieval algorithm using prescribed LST showed that the correlation coefficient (CC), the bias and the root mean squared error (RMSE) is 0.999, 0.023K and 0.437K, respectively. Also, the validation with 26 in-situ observation data in 2021 showed that the CC, bias and RMSE is 0.993, 1.875K and 2.079K, respectively. The results of this study suggest that the LST can be retrieved using different characteristics of the two bands of mid-infrared to the atmospheric and surface conditions at night. Therefore, it is necessary to retrieve the LST using satellite data equipped with sensors in the mid-infrared bands.