• Title/Summary/Keyword: angiotensin converting enzyme

Search Result 654, Processing Time 0.05 seconds

Cloning of Pig Kidney cDNA Encoding an Angiotensin I Converting Enzyme (돼지 신장의 Angiotensin I Converting Enzyme cDNA 클로닝)

  • Yoon, Jang-Ho;Yoon, Joo-Ok;Hong, Kwang-Won
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.293-297
    • /
    • 2006
  • Angiotensin converting enzyme(ACE) is a zinc-containing dipeptidase widely distributed in mammalian tissues and is thought to play a significant role in blood pressure regulation by hydrolyzing angiotensin I to the potent vasoconstrictor, angiotensin II. Recently, the presence of ACE in pig ovary was reported and the ACE from pig kidney was isolated and characterized. However no nucleotide sequence of the ACE gene from pig is yet known. We report here the cloning of the ACE cDNA from pig kidney by using the reverse transcriptase-polymerase chain reaction. The complete amino acid sequence deduced from the cDNA contains 1309 residues with a molecular mass of 150 kDa, beginning with a signal peptide of 33 amino acids. Amino acid sequence analysis showed that pig kidney ACE is also probably anchored by a short transmembrane domain located near the C-terminus. This protein contains a tandem duplication of the two homologous amino acid peptidase domain. Each of these two domains bears a putative metal-binding site (His-Glu-Met-Gly-His) identified in mammalian somatic ACE. The alignment of pig ACE amino acid sequence with human, rabbit, and mouse reveals that both two domains have been highly conserved during evolution.

Angiotensin Converting Enzyme Inhibitory Activity of Skipjack/Yellow Tuna Cooking Broth (참치 자숙액의 Angiotensin 전환효소 저해작용)

  • Yeo, Saeng-Gyu;Lee, Tae-Gee;Ahn, Cheol-Woo;Kim, In-Soo;Gu, Yeun-Suk;Park, Yeong-Ho;Kim, Seon-Bong
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.312-317
    • /
    • 1998
  • This study was designed to investigate the angiotensin convertin enzyme (ACE) inhibitory activity of skipjack/yellowpin tuna cooking broth. The cooking broth was pretreated with membrane filter (MW cut-off 5,000) to obtain the peptide fraction with ACE inhibition. the crude peptides fractionated with Amberlite IR-120 ($H^{+}$ form and followed by Bio-gel P-2, were separated into nine fractions (T-1 to T-9). The maximum inhibitory activity was observed in the fraction T-4 ($IC_{50}$ value, 0.619mg/ml). The abundant amino acids obtained from active fraction T-4 were phenylaanine, leucine and glutamic acid.

  • PDF

Angiotensin I Converting Enzyme Inhibitor Derived from fermented Mussel, Mytilus edulus

  • Je, Jae-Young;Park, Pyo-Jam;Byun, Hee-Guk;Kim, Se-Kwon;Kim, Jong-Bae;Chang, Soo-Hyun
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.191-192
    • /
    • 2002
  • Angiotensin I converting enzyme [EC 3.4.15.11 (ACE) is important in the maintenance of blood pressure. The enzyme removes histidyl-leucine from angiotensin I to form the blood-vessel-constricting octapeptide, angiotensin II, and degrades vasodilative bradykinin in blood vessels and stimulates e release of aldosterone in the adrenal cortex. (omitted)

  • PDF

Production and Separation of Angiotension Converting Enzyme Inhibitor during Natto Fermentation (납두 발효과정 중 Angiotensin Converting Enzyme 저해물질의 생성 및 분리)

  • Cho, Young-Je;Cha, Woen-Suep;Bok, Su-Kyung;Kim, Myung-Uk;Chun, Sung-Sook;Choi, Ung-Kyu;Kim, Soon-Hee;Park, Kyung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.4
    • /
    • pp.737-742
    • /
    • 2000
  • As functionality investigation of a soybean fermentation food, a angiotensin converting enzyme inhibitory peptide was separated during natto fermentation by Bacillus natto and inhibitory effect was investigated. After incubation at each 2$0^{\circ}C$, 3$0^{\circ}C$, 4$0^{\circ}C$, 5$0^{\circ}C$, 6$0^{\circ}C$ for the 0~72 hr, protein content, protease activity and angiotensin converting enzyme inhibition were determined. The protein content and protease activity were increased and reached maximum at 60 hr fermentation with 4$0^{\circ}C$ and decreased after the 60 hr fermentation during natto fermentation. The optimum condition for angiotensin converting enzyme inhibitors was appeared at fermentation for 60 hr at 4$0^{\circ}C$. Crude extract of natto was partially purified by Amicon membrane YM-3 and Sephadex G-10, G-25 gel filtration, stepwise. The inhibitory rate was increased in a concentration dependent manner, espcially the most potent activity about 74.74% at 1.0 mg peptide content. The most prominent amino acid of the peptide from natto was alanine, followed by phenylalnine, histidine.

  • PDF

Physiological Characteristics and Angiotensin Converting Enzyme Inhibitory Activity of Lactobacillus brevis HLJ59 Isolated from Salted Shrimp (국내 새우젓에서 분리한 Lactobacillus brevis HLJ59의 Angiotensin Converting Enzyme 저해활성 및 생리적 특성)

  • Jeon, Chun-Pyo;Kim, Yun-Hoi;Lee, Jung-Bok;Jo, Min-Sub;Shin, Kee-Sun;Choi, Chung-Sig;Kwon, Gi-Seok
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • In this study, lactic acid bacteria with high angiotensin converting enzyme inhibitor activity were isolated from Korean fermented food, such as kimchi and salted seafood. The strain HLJ59, isolated from salted shrimp showed the highest angiotensin converting enzyme inhibitor activity in DeMan Rogosa Sharpe broth. Optimum growth temperature of Lactobacillus brevis HLJ59 was at $34^{\circ}C$. Acid treatment at pH 3.0 for 1.5 h decreased cell viability from $9.9{\times}10^8$ CFU/ml to $3.11{\times}10^4$ CFU/ml. The bile extract concentration of 0.3%, 0.5%, and 1.0% in MRS broth did not inhibit the growth of HLJ59. Isolated strain HLJ59 showed more sensibility to amikacin, gentamycin, neomycin, streptomycin, kanamycin, cefmetazole, cephalothin, ampicillin, ticarcillin, sulbactam+ampicillin, amoxicillin+clavulanic acid (AMC), tetracycline, and sulfamethoxazole+trime thoprim (SXT) as compare to other 7 different antibiotics. However, it showed more resistance to cefoxatin, ceftnaxone, penicillin, ciprofloxacin, nalidixic acid, lincomycin, and chloramphenicol.

Purification and Characterization of an Angiotensin Converting Enzyme Inhibitor from Squid Ink

  • Kim, So-youn;Kim, Sun-hye;Song, Kyung-Bin
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.135.2-135
    • /
    • 2003
  • Angiotensin converting enzyme (ACE) converts angiotensin I into angiotensin II by cleaving C-terminal dipeptide of angiotensin I and inactivates bradykinin. ACE inhibitors have been screened from various food sources since the inhibitors decrease blood pressure. Therefore, in this study, an ACE inhibitor was isolated and purified from squid ink using membrane filtration, gel permeation chromatography, normal phase HPLC, and fast protein liquid chromatography. The purified inhibitor was identified to be a molecular mass of 294 by mass spectrometry, and to have IC$\sub$50/ value of 4.9 $\mu\textrm{g}$/mL.

  • PDF

Structure-Activity Relationships Study of Angiotensin Converting Enzyme Inhibitor Captopril Derivatives: Importance of Solution Moleculnr Dynamics Study (Angiotensin 변환 효소 억제제인 Captopril 유도체들의 구조와 활성관계 연구: 수용액상의 분자동력학적 연구의 중요성)

  • 지명환;윤창노;진창배;박종세
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 1994
  • In order to investigate the structure-activity relationships of the stereoisomers of angiotensin converting enzyme inhibitors, captopril and its derivatives were selected as model compounds. In vitro enzymatic activities of them depend on the symmetry at the asymmetric carbons. Especially, the alanyl carbon should have the S configuration to be biologically active. But the demethylated captopril having the achiral carbon also shows the activity although it is less active than captopril. Seven stereoisomers of captopril and its derivatives were chosen and their acidic and ionic forms were used for molecular dynamics simulations. Four computer simulations were practiced for each model compound in order to obtain the good condition for simulation to explain the experimental structure-activity relationships. From the computer simulation results, relativistic movements of three well-known pharmacophoric sites, carboxylate carbon, carbonyl oxygen, and sulfur atoms, were analyzed. Good results were obtained from the aqueous solution molecular dynamics simulation with ionic forms of model compounds. Active model compounds have the pharmacophoric areas of 6.08 to 6.38 $\AA$$^2$and the similarity in the geometrical data. But inactive ones have the largely deviated values of 4.51 to 4.87 $\AA$$^2$from those of active ones.

  • PDF

Purification of Angiotensin I-Converting Enzyme Inhibitory Peptide from Squid Todarodes pacificus Skin (오징어(Todarodes pacificus) 껍질로부터 Angiotensin I 전환효소 저해 펩티드의 분리 정제)

  • Lee, Jung-Kwon;Jeon, Joong-Kyun;Byun, Hee-Guk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.2
    • /
    • pp.118-125
    • /
    • 2011
  • In this study, an angiotensin I-converting enzyme (ACE) inhibitor from squid skin was purified and characterized. Squid (Todarodes pacificus) skin protein isolates were hydrolyzed using six commercial proteases: alcalase, ${\alpha}$-chymotrypsin, neutrase, papain, pepsin, and trypsin. The peptic hydrolysate had the highest ACE inhibitory activity. The ACE inhibitory peptide was purified using Sephadex G-25 column chromatography and reverse phase high-performance liquid chromatography (HPLC) with a $C_{18}$ column. The purified ACE inhibitory peptide was identified and sequenced, and found to consist of seven amino acid residues: Ser-Ala-Gly-Ser-Leu-Val-Pro (657Da). The $IC_{50}$ value of the purified ACE inhibitory peptide was 766.2 ${\mu}M$, and Lineweaver-Burk plots suggested that the purified peptide acts as a noncompetitive ACE inhibitor. These results suggest that the ACE inhibitory peptide purified from the peptic hydrolysate of squid skin may be of benefit in developing antihypertensive drugs and functional foods.

Angiotensin Converting Enzyme에 작용하는 Mechanism-Based Inactivator의 설계와 합성

  • 김동한
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.42-42
    • /
    • 1993
  • Angiotensin converting enzyme (ACE)은 혈압 상승작용과 밀접한 관계가 있는 효소이다. 따라서 이 효소의 작용 억제는 혈압 강하를 초래한다. 본 실험에서는 ACE와 여러점에서 유사점을 가진 Carboxypeptidase A에 대하여 강력한 억제 효과를 나타내는 간단한 구조의 억제제를 개발한 바 있는데. 이때 사용한 억제제 설계방법을 ACE 억제제 개발에 적용시켜 ACE 억제를 통한 고혈압 강하제 개발을 목적으로 하였다. ACE 억제작용에 있어서의 알려진 구조-활성 상관 관계와 ACE의 활성부위를 기초로 해서 아래와 같은 구조의 물질을 억제작용 보유의 물질로 설계하고 합성하였다.

  • PDF

In vitro Screening of Oriental Medicinal Plants for Inhibitory Effects on Angiotensin-converting Enzyme (한약재들의 안지오텐신 전환효소 억제 작용 검색)

  • 강대길;오현철;손은진;권태오;이호섭
    • The Journal of Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.3-9
    • /
    • 2001
  • Objective : Oriental medicinal plants reported to be used as anti-hypertensive drugs have been in vitro screened for inhibitory effects on angiotensin-converting enzyme (ACE). Methods : The bioassay is based on inhibition of plasma angiotensin-converting enzyme, as measured from the enzymatic cleavage of the Hip-His-Leu substrate into His-Leu. The plant material is extracted with hexane, ethylacetate, n-buthanol and water separately. Results : In total, 51 species (202 extracts) have been investigated and $400{\;}\mu\textrm{g}/ml$ of the solvent extracts from 26 extracts inhibit the enzyme activities by more than 50%. Among them, four samples of two plant species (buthanol and ethylacetate extracts of Salvia miltiorrhiza and buthanol and water extracts of Jeffersonia dubia) were found to posses a high ACE inhibition ability more than 90%. Conclusion : These results suggested that many Oriental medicinal plants have a antihypertensive effects by inhibition of ACE.

  • PDF