• Title/Summary/Keyword: anergy

Search Result 18, Processing Time 0.023 seconds

Induction of CD4+ Regulatory and Polarized Effector/helper T Cells by Dendritic Cells

  • Manfred B. Lutz
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.13-25
    • /
    • 2016
  • Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4+ T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4+ T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4+ T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4+ T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3- regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3+ Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed.

Immune Tolerance in Murine Islet Transplantation Across HY Disparity (HY 항원 불일치 췌도 이식에 의한 면역 관용의 유도)

  • Choi, Seung-Eun;Park, Chung-Gyu
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.53-59
    • /
    • 2004
  • Background: Minor histocompatibility HY antigen, as a transplantation antigen, has been known to cause graft rejection in MHC (major histocompatibility complex) matched donor-recipient. The aim of our study is to investigate the role of male antigen (HY) disparity on MHC matched pancreatic islet transplantation and to examine the mechanism of the immune reaction. Methods: Pancreatic islets were isolated and purified by collagen digestion followed by Ficoll gradient. The isolated islets of male C57BL6/J were transplanted underneath the kidney capsule of syngeneic female mice rendered diabetic with streptozotocine. Blood glucose was monitored for the rejection of engrafted islets. After certain period of time, tail to flank skin transplantation was performed either on mouse transplanted with HY mismatched islets or on sham treated mouse. The rejection was monitored by scoring gross pathology of the engrafted skin. Results: HY mismatched islets survived more than 300 days in 14 out of 15 mice. The acceptance of second party graft (male B6 islets) and the rejection of third party graft (male BALB/c islets) in these mice suggested the tolerance to islets with HY disparity. B6 Skin with HY disparity was rejected on day $25{\pm}7$. However, HY mismatched skin transplanted on the mice tolerated to HY mismatched islets survived more than 240 days. Tetramer staining in these mice indicated the CTL recognizing MHC Db/Uty was not deleted or anergized. Conclusion: The islet transplantation across HY disparity induced tolerance to HY antigen in C57BL6 mouse, which in turn induced tolerance to HY mismatched skin, which otherwise would be rejected within 25 days. The MHC tetramer staining suggested the underlying mechanisms would not be clonal deletion or anergy.

Randomized, Double-blind, and Placebo-controlled a Clinical Study for Chronic Fatigue via the Analysis of Efficacy and Safety of Gongjin-dan and Ssanghwa-tang : Study Protocol (만성피로에 대한 공진단과 쌍화탕의 안전성 및 유효성 평가를 위한 무작위배정, 이중눈가림, 위약대조 임상시험 : 임상연구 프로토콜)

  • Jun-Yong, Choi;Byungmook, Lim;Hyeun-kyoo, Shin;Kibong, Kim
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.97-108
    • /
    • 2022
  • Objectives : The purpose of this study is to confirm the efficacy and safety of Gongjin-dan and Ssanghwatang for chronic fatigue. Methods : A total of 90 people, between 19 and 65 years old, will be recruited to participate in a randomized, double-blind, and placebo-controlled a clinical trial. Participants in the Gongjin-dan group will take one pill of Gongjin-dan along with three packs of placebo oral liquid Ssanghwa-tang per day for 4 weeks. Participants in the Ssanghwa-tang group will take three packages of liquid Ssanghwa-tang and one placebo Gongjindan pill per day for 4 weeks. In the placebo group, participants will take one pill of placebo Gongjin-dan and three packs of placebo liquid Ssanghwa-tang per day, for 4 weeks. Outcomes will be measured at the baseline, 4th week, and 6th week. The primary outcome is the change in the Fatigue Severity Scale (FSS). Secondary outcomes are the change of Multidimensional Fatigue Inventory-20 (MFI-20), Chalder Fatigue Scale (CFQ), Short-Form 36 Health Survey (SF-36), Korean Version of Schedule of Fatigue and Anergy/General Physician (SOFA/GP), Glucose, Lactate, Ammonia, Free Fatty Acid (FAA), d-ROMs&BAP, Selenium, and Cortisol. Results : This trial was approved by the institutional review board of Pusan National University Korean Medicine Hospital (registry number: PNUKHIRB 2021-10-005). Recruitment opened in November 2021 and is supposed to be completed by December 2022. Conclusions : This trial will provide clinical information to determine the efficacy and safety of Gongjindan and Ssanghwa-tang for chronic fatigue.

Low-Level Expression of CD138 Marks Naturally Arising Anergic B Cells

  • Sujin Lee;Jeong In Yang;Joo Hee Lee;Hyun Woo Lee;Tae Jin Kim
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.50.1-50.19
    • /
    • 2022
  • Autoreactive B cells are not entirely deleted, but some remain as immunocompetent or anergic B cells. Although the persistence of autoreactive B cells as anergic cells has been shown in transgenic mouse models with the expression of B cell receptor (BCR) reactive to engineered self-antigen, the characterization of naturally occurring anergic B cells is important to identify them and understand their contribution to immune regulation or autoimmune diseases. We report here that a low-level expression of CD138 in the splenic B cells marks naturally arising anergic B cells, not plasma cells. The CD138int B cells consisted of IgMlowIgDhigh follicular (FO) B cells and transitional 3 B cells in homeostatic conditions. The CD138int FO B cells showed an anergic gene expression profile shared with that of monoclonal anergic B cells expressing engineered BCRs and the gene expression profile was different from those of plasma cells, age-associated B cells, or germinal center B cells. The anergic state of the CD138int FO B cells was confirmed by attenuated Ca2+ response and failure to upregulate CD69 upon BCR engagement with anti-IgM, anti-IgD, anti-Igκ, or anti-IgG. The BCR repertoire of the CD138int FO B cells was distinct from that of the CD138- FO B cells and included some class-switched B cells with low-level somatic mutations. These findings demonstrate the presence of polyclonal anergic B cells in the normal mice that are characterized by low-level expression of CD138, IgM downregulation, reduced Ca2+ and CD69 responses upon BCR engagement, and distinct BCR repertoire.

Lactoferrin Induces Tolerogenic Bone Marrow-Derived Dendritic Cells

  • Hui-Won Park;Sun-Hee Park;Hyeon-Ju Jo;Tae-Gyu Kim;Jeong Hyun Lee;Seung-Goo Kang;Young-Saeng Jang;Pyeung-Hyeun Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.38.1-38.12
    • /
    • 2020
  • Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that initiate both T-cell responses and tolerance. Tolerogenic DCs (tDCs) are regulatory DCs that suppress immune responses through the induction of T-cell anergy and Tregs. Because lactoferrin (LF) was demonstrated to induce functional Tregs and has a protective effect against inflammatory bowel disease, we explored the tolerogenic effects of LF on mouse bone marrow-derived DCs (BMDCs). The expression of CD80/86 and MHC class II was diminished in LF-treated BMDCs (LF-BMDCs). LF facilitated BMDCs to suppress proliferation and elevate Foxp3+ induced Treg (iTreg) differentiation in ovalbumin-specific CD4+ T-cell culture. Foxp3 expression was further increased by blockade of the B7 molecule using CTLA4-Ig but was diminished by additional CD28 stimulation using anti-CD28 Ab. On the other hand, the levels of arginase-1 and indoleamine 2,3-dioxygenase-1 (known as key T-cell suppressive molecules) were increased in LF-BMDCs. Consistently, the suppressive activity of LF-BMDCs was partially restored by inhibitors of these molecules. Collectively, these results suggest that LF effectively causes DCs to be tolerogenic by both the suppression of T-cell proliferation and enhancement of iTreg differentiation. This tolerogenic effect of LF is due to the reduction of costimulatory molecules and enhancement of suppressive molecules.

Immunotherapeutic Effects of CTLA4Ig Fusion Protein on Murine EAE and GVHD (마우스 EAE, GVHD 질환에서 CTLA4Ig 융합단백의 면역치료 효과)

  • Jang, Seong-Ok;Hong, Soo-Jong;Cho, Hoon-Sik;Chung, Yong-Hoon
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.302-309
    • /
    • 2003
  • Background: CTLA4 (CD152), which is expressed on the surface of T cells following activation, has a much higher affinity for B7 molecules comparing to CD28, and is a negative regulator of T cell activation. In contrast to stimulating and agonistic capabilities of monoclonal antibodies specific to CTLA-4, CTLA4Ig fusion protein appears to act as CD28 antagonist and inhibits in vitro and in vivo T cell priming in variety of immunological conditions. We've set out to confirm whether inhibition of the CD28-B7 costimulatory response using a soluble form of human CTLA4Ig fusion protein would lead to persistent inhibition of alloreactive T cell activation. Methods: We have used CHO-$dhfr^-$ cell-line to produce CTLA4Ig fusion protein. After serum free culture of transfected cell line we purified this recombinant molecule by using protein A column. To confirm characterization of fusion protein, we carried out a series of Western blot, SDS-PAGE and silver staining analyses. We have also investigated the efficacy of CTLA4Ig in vitro such as mixed lymphocyte reaction (MLR) & cytotoxic T lymphocyte (CTL) response and in vivo such as experimental autoimmune encephalomyelitis (EAE), graft versus host disease (GVHD) and skin-graft whether this fusion protein could inhibit alloreactive T cell activation and lead to immunosuppression of activated T cell. Results: In vitro assay, CTLA4Ig fusion protein inhibited immune response in T cell-specific manner: 1) Human CTLA4Ig inhibited allogeneic stimulation in murine MLR; 2) CTLA4Ig prevented the specific killing activity of CTL. In vivo assay, human CTLA4Ig revealed the capacities to induce alloantigen-specific hyporesponsiveness in mouse model: 1) GVHD was efficiently blocked by dose-dependent manner; 2) Clinical score of EAE was significantly decreased compared to nomal control; 3) The time of skin-graft rejection was not different between CTLA4Ig treated and control group. Conclusion: Human CTLA4Ig suppress the T cell-mediated immune response and efficiently inhibit the EAE, GVHD in mouse model. The mechanism of T cell suppression by human CTLA4Ig fusion protein may be originated from the suppression of activity of cytotoxic T cell. Human CTLA4Ig could not suppress the rejection in mouse skin-graft, this finding suggests that other mechanism except the suppression of cytotoxic T cell may exist on the suppression of graft rejection.

T-Cell Immunoglobulin Mucin 3 Expression on Tumor Infiltrating Lymphocytes as a Positive Prognosticator in Triple-Negative Breast Cancer

  • Byun, Kyung Do;Hwang, Hyo Jun;Park, Ki Jae;Kim, Min Chan;Cho, Se Heon;Ju, Mi Ha;Lee, Jin Hwa;Jeong, Jin Sook
    • Journal of Breast Cancer
    • /
    • v.21 no.4
    • /
    • pp.406-414
    • /
    • 2018
  • Purpose: T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) is an emerging immune response molecule related to T-cell anergy. There has been tremendous interest in breast cancer targeting immune checkpoint molecules, especially in the triple-negative breast cancer (TNBC). This study was designed to investigate TIM-3 expression on tumor infiltrating lymphocytes (TILs), its relationships with clinicopathological parameters and expression of programmed death receptor 1 (PD-1)/programmed death receptor ligand 1 (PD-L1), and its prognostic role. Methods: Immunohistochemistry on tissue microarray blocks produced from 109 samples of invasive ductal carcinoma type TNBC was performed with antibodies toward TIM-3, PD-1, PD-L1 and breast cancer-related molecular markers. Associations between their expression and clinicopathological parameters as well as survival analyses were performed. Results: TIM-3 was expressed in TILs from all 109 TNBCs, consisting of 17 cases (<5%), 31 cases (6%-25%), 48 cases (26%-50%), and 13 cases (>51%). High TIM-3 was significantly correlated with younger patients (p=0.0101), high TILs (p=0.0029), high tumor stage (p=0.0018), high PD-1 (p=0.0001) and high PD-L1 (p=0.0019), and tended to be associated with higher histologic grade, absence of extensive in situ components and microcalcification. High TIM-3 expression was significantly associated with a combinational immunophenotype group of high PD-L1 and high PD-1 (p<0.0001). High TIM-3 demonstrated a significantly better disease-free survival (DFS) (p<0.0001) and longer overall survival (OS) (p=0.0001), together with high TILs and high PD-1. In univariate survival analysis, high TIM-3 showed reduced relapse risk (p<0.0001) and longer OS (p=0.0003), together with high PD-1 expression. In multivariate analysis, high TIM-3 was statistically significant in predicting prognosis, showing better DFS (hazard ratio [HR], 0.0994; 95% confidence interval [CI], 0.0296-0.3337; p=0.0002) and longer OS (HR, 0.1109; 95% CI, 0.0314-0.3912; p=0.0006). Conclusion: In this study, we demonstrate that TIM-3 expression is an independent positive prognostic factor in TNBC, despite its association with poor clinical and pathologic features.

Cellular Energy Allocation of a Marine Polychaete Species (Perinereis aibuhitensis) Exposed to Dissolving Carbon Dioxide in Seawater (해수 중 용존 이산화탄소 농도 증가가 두토막눈썹참갯지렁이(Perinereis aibuhitensis)의 세포내 에너지 할당에 미치는 영향)

  • Moon, Seong-Dae;Lee, Ji-Hye;Sung, Chan-Gyoung;Choi, Tae Seob;Lee, Kyu-Tae;Lee, Jung-Suk;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • An experiment was conducted to evaluate the biochemical adverse effect of increased carbon dioxide in seawater on marine polychaete, Perinereis aibuhitensis. We measured the available energy reserves, Ea (total carbohydrate, protein, and lipid content) and the energy consumption, Ec (electron transport activity) of Perinereis aibuhitensis exposed for 7-d to a range of $CO_2$ concentration such as 0.39 (control =390 ppmv), 3.03 (=3,030 ppmv), 10.3 (=10,300 ppmv), and 30.1 (=30,100 ppmv) $CO_2$ mM, respectively. The cellular energy allocation (CEA) methodology was used to assess the adverse effects of toxic stress on the energy budget of the test organisms. The results of a decrease in CEA effect of increased carbon dioxide in seawater from all individual in Ea and Ec. Increase of carbon dioxide reduced pH in seawater, significantly. The chemical changes in sea- water caused by increasing $pCO_2$ might cause stresses to test organisms and changes in the cellular energy allocations. Results of this study can be used to understand the possible influence of $CO_2$ concentration increased by the leakage from sub-sea bed storage sites as well as fossil fuel combustion on marine organisms.