• Title/Summary/Keyword: and ultrasonic sensors

Search Result 524, Processing Time 0.026 seconds

Positional Uncertainty Reduction of Overlapped Ultrasonic Sensor Ring for Efficient Mobile Robot Obstacle Detection (효율적인 이동로봇의 장애물 탐지를 위한 중첩 초음파 센서 링의 위치 불확실성 감소)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.198-206
    • /
    • 2009
  • This paper presents the reduction of the positional uncertainty of an ultrasonic sensor ring with overlapped beam pattern for the efficient obstacle detection of a mobile robot. Basically, it is assumed that a relatively small number of inexpensive low directivity ultrasonic sensors are installed at regular spacings along the side of a circular mobile robot with their beams overlapped. First, for both single and double obstacles, we show that the positional uncertainty inherent to an ultrasonic sensor can be reduced using the overlapped beam pattern, and also quantify the relative improvement in positional uncertainty. Second, given measured distance data from one or two ultrasonic sensors, we devise the geometric method to determine the position of an obstacle with respect to the center of a mobile robot. Third, we examine and compare existing ultrasonic sensor models, including Gaussian distribution, parabolic distribution, uniform distribution, and impulse, and then build the sensor model of overlapped ultrasonic sensors, adequate for obstacle detection in terms of positional uncertainty and computational requirement. Finally, through experiments using our prototype ultrasonic sensor ring, the validity of overlapped beam pattern for reduced positional uncertainty and efficient obstacle detection is demonstrated.

  • PDF

Improved ultrasonic beacon system for indoor localization

  • Shin, Su-Young;Choi, Jong-Suk;Kim, Byoung-Hoon;Park, Mi-Gnong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1775-1780
    • /
    • 2005
  • One of the most important factors so that mobile objects can achieve their purpose is the information about their positions. In this paper, we propose an improved beacon system, to which ultrasonic sensors are attached, for the indoor localization of mobile objects. We have researched so that it can cover the wider space and estimate more accurate positions than the existent beacon systems. The existent beacon systems have the constraint that one beacon cannot cover wide area since ultrasonic sensors have limits in the angle of signal (beam-angle) on which their signal strength depends. Hence, we used the active beacon which consists of a pan-tilt mechanism and a beacon module. The active beacon system can always aim at mobile objects in order to transmit the strongest signal of the ultrasonic sensors into the objects using the pan-tilt mechanism. In addition, this system is inexpensive because it can decrease the number of beacons by about a half of the beacons of the existent system. Finally, the results show what is the difference between the active beacon system and existent beacon systems, and how accurate it is.

  • PDF

Technology and Market Trend Analysis of the Sealed-type Ultrasonic Sensor (밀폐형 초음파 센서 모듈의 기술 및 시장 동향 분석)

  • Kwon, young-il
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.846-850
    • /
    • 2008
  • Technologies related to sealed-type ultrasonic sensors and driving circuit modules for them are the key elements for intelligent robot industry. Those technologies are believed to yield a drastic enhancement of the performance measuring distances in the intelligent robot systems. Modulization technologies of ultrasonic sensors are expected to develop ASIC and MEMS technologies in the future. The size of domestic market for sealed-type ultrasonic sensor modules is expected to grow to 1 billion and 5.72 billion Won by 2008 and 2012, respectively. Recent interest to service robots and government-driven programs are promoting the rapid growth of the market for the service robots. Successful application of the sealed-type ultrasonic modules to the service robots is expected to replace the conventional photo-sensors in a near future.

  • PDF

An Enhancement of Ultrasonic Based Map-building Using Newton Interpolation (뉴턴 보간법을 이용한 초음파센서 기반의 맵빌딩 개선)

  • Choi, Kyung-Sik;Choi, Jung-Won;Lee, Suk-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.62-71
    • /
    • 2009
  • In mobile robotics, ultrasonic sensors became one of the most popular devices for collision avoidance and navigation primarily due to data robustness, the easy availability of low-cost systems, their compact size, simple circuits, and their ease in interfacing with computers. However, ultrasonic sonic sensors are subject to noise which results in inaccuracy of mapping and localization of the robot. This paper introduces a new approach to enhance environmental maps based on ultrasonic range data using linear interpolation and Newton interpolation. The simulation and experimental results show that the proposed method improves of the accuracy of the map through better distance estimation between the mobile robot and obstacles.

Performance Evaluation, Optimal Design and Complex Obstacle Detection of an Overlapped Ultrasonic Sensor Ring (중첩 초음파 센서 링의 성능 평가, 최적 설계 및 복합 장애물 탐지)

  • Kim, Sung-Bok;Kim, Hyun-Bin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.341-347
    • /
    • 2011
  • This paper presents the performance evaluation. optimal design. and complex obstacle detection of an overlapped ultrasonic sensor ring by introducing a new concept of effective beam width. It is assumed that a set of ultrasonic sensors of the same type are arranged along a circle of nonzero radius at regular spacings with their beams overlapped. First, the global positional uncertainty of an overlapped ultrasonic sensor ring is expressed by the average value of local positional uncertainty over the entire obstacle detection range. The effective beam width of an overlapped ultrasonic sensor ring is assessed as the beam width of a single ultrasonic sensor having the same amount of global positional uncertainty, from which a normalized obstacle detection performance index is defined. Second. using the defined index, the design parameters of an overlapped ultrasonic sensor ring are optimized for minimal positional uncertainty in obstacle detection. For a given number of ultrasonic sensors, the optimal radius of an overlapped ultrasonic sensor ring is determined, and for a given radius of an overlapped ultrasonic sensor ring, the optimal number of ultrasonic sensors is determined. Third, the decision rules of positional uncertainty zone for multiple obstacle detection are provided based on the inequality relationships among obstacle distances by three adjacent ultrasonic sensors. Using the provided rules, the obstacle outline detection is performed in a rather complex environment consisting of several obstacles of different shapes.

A Study on the Underwater Communication system of Ultrasonic Transducer (초음파 센서를 이용한 수중통신기에 관한 연구)

  • Kim, Dong-Hyun;Oh, Seung-Jae;Hwang, Hyun-Suk;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.168-171
    • /
    • 2000
  • Underwater acoustic communications have made considerable advances in the past decade. The purpose of this paper is to achieve the underwater communication by ultrasonic sensors and to investigate conditions of good underwater acoustic communicators. As a result of this experiments, the ultrasonic sensors, MA40E7R/S, made by Nicera can be used as ultrasonic transducers for underwater communication using AM(Amplitude Modulation) signal and Transmission Loss is 17.328[dB] at 65[cm]. To make a good underwater communicator, proper diameter of disk PZT transduers is the one of most important factors, because radiation of acoustic wave depends on proper diameter of transduers and the transmission loss strongly depends on the spreading loss.

  • PDF

Nondestructive Measurement of Cheese Texture using Noncontact Air-instability Compensation Ultrasonic Sensors

  • Baek, In Suck;Lee, Hoonsoo;Kim, Dae-Yong;Lee, Wang-Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.319-326
    • /
    • 2012
  • Purpose: Cheese texture is an important sensory attribute mainly considered for consumers' acceptance. The feasibility of nondestructive measurements of cheese texture was explored using non-contact ultrasonic sensors. Methods: A novel non-contact air instability compensation ultrasonic technique was used for five varieties of hard cheeses to measure ultrasonic parameters, such as velocity and attenuation coefficient. Five texture properties, such as fracturability, hardness, springiness, cohesiveness, and chewiness were assessed by a texture profile analysis (TPA) and correlated with the ultrasonic parameters. Results: Texture properties of five varieties of hard cheese were estimated using ultrasonic parameters with regression analysis models. The most effective model predicted the fracturability, hardness, springiness, and chewiness, with the determination coefficients of 0.946 (RMSE = 21.82 N), 0.944 (RMSE = 63.46 N), 0.797 (RMSE = 0.06 ratio), and 0.833 (RMSE = 17.49 N), respectively. Conclusions: This study demonstrated that the non-contact air instability compensation ultrasonic sensing technique can be an effective tool for rapid and non-destructive determination of cheese texture.

Air Flow Rate Measurement in Multi Point Injection Engine U sing Ultrasonic Sensors (초음파센서를 이용한 전자식 연료분사엔진의 흡기유량측정)

  • Park, K.S.;Kim, J.I.;Kauh, S.K.;Noh, S.T.;Lee, J.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.58-65
    • /
    • 1995
  • In this study an air flow meter was developed for MPI engine using ultrasonic sensors. The major characteristcs of the ultrasonic flow meter are high speed response, flow direction recognition and linear output. The air flow rate measurements were conducted at upstream of the throttle and intake manifold. The characteristics of the ultrasonic flow meter are compared with those of the Bosch hot wire flow meter at both steady and unsteady engine conditions.

  • PDF

Development of Obstacle Alarm for the Visually Impaired (시각 장애인을 위한 장애물 경보기의 개발)

  • 심현민;이응혁;민홍기;홍승홍
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.113-116
    • /
    • 2002
  • In this paper, we propose the sound-mapping algorithm of the detected obstacle by ultrasonic sensors. We apply this algorithm to a Obstacle alarm for the visually impaired. In our system, we acquire obstacles information using ultrasonic sensors, and transform two-dimensional and distance information into sound-imaging information and vibrator with azimuth (direction) and distance. We implement this system with ultrasonic sensors to more effective expression of the obstacle information. The distance of an obstacle can be expressed by sound pressure level, and azimuth of the obstacles can be expressed by inter-aural time difference (ITD) and inter-aural level difference (ILD) that are two important cues in a binaural system. These are the principal cues for sound localization, to detect sound source. In this system, the obstacle is substituted with a sound source. The visually impaired receive sound information of obstacles by headphone.

  • PDF

Accuracy Analysis of Ultrasonic, Magnetic and Radar Sensors for Manhole Monitoring

  • Khatatbeh, Arwa;Kim, Young-Oh;Kim, Hyeonju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.427-427
    • /
    • 2021
  • During the rainy season, heavy downpours are always a source of concern for the world. Flooding and heavy rains can devastate communities, disrupt agriculture, and contribute to traffic accidents.. Weir and flow hall effect sensors are the conventional analytical methods for measuring flow rate; in this paper, we analyzed manhole flowrate statistics. The measurement of the flow rate of a notch/weir is a time-consuming task that necessitates continuous mathematical analysis. . We created three types of IoT sensors in this study: (HC-SR04 ultrasonic, YF-S201 magnetic, and HB100 radar), which take the sensor's real-time input signal and estimate the flow using a notch equation and a previously calibrated optimized coefficient of discharge. The proposed systems are cost-effective, but in terms of accuracy, we found that the HC-SR04 ultrasonic sensor is the best of the three systems

  • PDF