• 제목/요약/키워드: and ultrasonic sensors

Search Result 527, Processing Time 0.026 seconds

The Design of Controller for Unlimited Track Mobile Robot

  • Park, Han-Soo;Heon Jeong;Park, Sei-Seung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41.6-41
    • /
    • 2001
  • As autonomous mobile robot become more widely used in industry, the importance of navigation system is rising, But eh primary method of locomotion is with wheels, which cause man problems in controlling tracked mobile robots. In this paper, we discuss the used navigation control of tracked mobile robots with multiple sensors. The multiple sensors are composed of ultrasonic wave sensors and vision sensors. Vision sensors gauge distance using a laser and create visual images, to estimate robot position. The 80196 is used at close range and the vision board is used at long range. Data is managed in the main PC and management is distributed to ever sensor. The controller employs fuzzy logic.

  • PDF

A study on the SRF array to detect the obstacles of the mobile robot's path (이동 로보트 경로상의 장애물 검지를 위한 SRF (Sonic Range Finder) Array에 관한 연구)

  • 윤영배;이상민;홍승홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.87-90
    • /
    • 1987
  • This paper gives the Sonic Range Finder(SRF) Array which detects the unknown obstacles on the mobile robot's path. This SRF Array gives mobile robot's circumstance information wider, processes and transfers them to the locomotion module to construct the modify path. In this system, 8 pairs of the 40 KHz ultrasonic sensors constitute the SRF Array, including a pair of reference sensors to correct the errors, 4051 analog multiplexer and demultiplexer swtch the sensor with time and 8031-on chip micro computer controls processes the data and communication the others.

  • PDF

Pillar and Vehicle Classification using Ultrasonic Sensors and Statistical Regression Method (통계적 회귀 기법을 활용한 초음파 센서 기반의 기둥 및 차량 분류 알고리즘)

  • Lee, Chung-Su;Park, Eun-Soo;Lee, Jong-Hwan;Kim, Jong-Hee;Kim, Hakil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.428-436
    • /
    • 2014
  • This paper proposes a statistical regression method for classifying pillars and vehicles in parking area using a single ultrasonic sensor. There are three types of information provided by the ultrasonic sensor: TOF, the peak and the width of a pulse, from which 67 different features are extracted through segmentation and data preprocessing. The classification using the multiple SVM and the multinomial logistic regression are applied to the set of extracted features, and has achieved the accuracy of 85% and 89.67%, respectively, over a set of real-world data. The experimental result proves that the proposed feature extraction and classification scheme is applicable to the object classification using an ultrasonic sensor.

Ultrasonic Targeting of NK Cell in Vessel Bifurcation for Immunotherapy: Simulation and Experimental Validation

  • Saqib Sharif;Hyeong-Woo Song;Daewon Jung;Hiep Xuan Cao;Jong-Oh Park;Byungjeon Kang;Eunpyo Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.418-424
    • /
    • 2023
  • Natural killer (NK) cells play a crucial role in combating infections and tumors. However, their therapeutic application in solid tumors is hindered by challenges, such as limited lifespan, tumor penetration, and delivery precision. Our research introduces a novel ultrasonic actuation technique to navigate NK cells more effectively in the vascular system, particularly at vessel bifurcations where targeted delivery is most problematic. We use a hemispherical ultrasonic transducer array that generates phase-modulated traveling waves, focusing on an ultrasound beam to steer NK cells using blood-flow dynamics and a focused acoustic field. This method enables the precise obstruction of non-target vessels and efficiently directs NK cells toward the tumor site. The simulation results offer insights into the behavior of NK cells under various conditions of cell size, radiation pressure, and fluid velocity, which inform the optimization of their trajectories and increase targeting efficiency. The experimental results demonstrate the feasibility of this ultrasonic approach for enhancing NK cell targeting, suggesting a potential leap forward in solid tumor immunotherapy. This study represents a significant step in NK cell therapeutic strategies, offering a viable solution to the existing limitations and promising enhancement of the efficacy of cancer treatments.

A Study on the Ultrasonic Measurement of Partial Discharge (부분방전의 초음파 측정에 관한 연구)

  • Sun, J.H.;Ryoo, H.S.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1562-1564
    • /
    • 1994
  • In this paper, we describe that the acoustic PD detection is examined in the various structures and position shapes of sensors. We find that the acoustic waves rate the complexity in various structures and position shapes of sensors may reduce the complexity of the acoustic wave in the PD detection of transformers.

  • PDF

Cylindrical Object Recognition using Sensor Data Fusion (센서데이터 융합을 이용한 원주형 물체인식)

  • Kim, Dong-Gi;Yun, Gwang-Ik;Yun, Ji-Seop;Gang, Lee-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.656-663
    • /
    • 2001
  • This paper presents a sensor fusion method to recognize a cylindrical object a CCD camera, a laser slit beam and ultrasonic sensors on a pan/tilt device. For object recognition with a vision sensor, an active light source projects a stripe pattern of light on the object surface. The 2D image data are transformed into 3D data using the geometry between the camera and the laser slit beam. The ultrasonic sensor uses an ultrasonic transducer array mounted in horizontal direction on the pan/tilt device. The time of flight is estimated by finding the maximum correlation between the received ultrasonic pulse and a set of stored templates - also called a matched filter. The distance of flight is calculated by simply multiplying the time of flight by the speed of sound and the maximum amplitude of the filtered signal is used to determine the face angle to the object. To determine the position and the radius of cylindrical objects, we use a statistical sensor fusion. Experimental results show that the fused data increase the reliability for the object recognition.

  • PDF

A Novel Method for Improving the Positioning Accuracy of a Magnetostrictive Position Sensor Using Temperature Compensation (온도 보상을 이용한 자기변형 위치 센서의 정확도 향상 방법)

  • Yoo, E.J.;Park, Y.W.;Noh, M.D.
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.414-419
    • /
    • 2019
  • An ultrasonic based magnetostrictive position sensor (MPS) provides an indication of real target position. It determines the real target position by multiplying the propagation speed of ultrasonic wave and the time-of-flight between the receiving signals; one is the initial signal by an excitation current and the other is the reflection signal by the ultrasonic wave. The propagation speed of the ultrasonic wave depends on the temperature of the waveguide. Hence, the change of the propagation speed in various environments is a critical factor in terms of the positioning accuracy in the MPS. This means that the influence of the changes in the waveguide temperature needs to be compensated. In this paper, we presents a novel way to improve the positioning accuracy of MPSs using temperature compensation for waveguide. The proposed method used the inherent measurement blind area for the structure of the MPS, which can simultaneously measure the position of the moving target and the temperature of the waveguide without any additional devices. The average positional error was approximately -23.9 mm and -1.9 mm before and after compensation, respectively. It was confirmed that the positioning accuracy was improved by approximately 93%.

Localization of Multiple Robots in a Wide Area (광역에서의 다중로봇 위치인식 기법)

  • Yang, Tae-Kyung;Choi, Won-Yeon;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.293-299
    • /
    • 2010
  • The multiple block localization method in a wide area for multiple robots using iGS is proposed in this paper. The iGS is developed for the indoor global localization using ultrasonic and RF sensors. To measure the distance between a mobile robot and a beacon, the tag on the mobile robot wakes up one beacon to send out the ultrasonic signal and measures the traveling time from the beacon to the mobile robot. As the number of robots is increased, the sampling time of localization also becomes longer. Note that only one robot can localize its own position calling beacons one by one during each of the sampling interval. This is a severe constraint for the localization of multiple robots in a wide area. This paper proposes an efficient localization algorithm for the multiple robots in a wide area which can be divided into multiple blocks. For a given block, a master beacon is designated to synchronize robots. By the access of the synchronization signal, each beacon in the selected group sends out an ultrasonic signal. When the robots in the block receive the ultrasonic signal, they can calculate their own locations based on the distances to the beacons, which are obtained by the multiplication of flight time and velocity of the ultrasonic signal. The efficiency of the algorithm is verified through the real experiments.

Development of Safety Sensor for Vehicle-Type Forest Machine in Forest Road

  • Ki-Duck Kim;Hyun-Seung Lee;Gyun-Hyung Kim;Boem-Soo Shin
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.254-260
    • /
    • 2023
  • A sensor system has been developed that uses an ultrasonic sensor to detect the downhill slope on the side of a forest road and prevents a vehicle-type forest machine from rolling down a mountainside. A specular reflection of ultrasonic wave might cause severe issues in measuring distances to targets. By investigating the installation angle of the sensor to minimize the negative effects of specular reflection, the installation angle of lateral monitoring ultrasonic sensor could be determined based on the width of road shoulder. Obstacles such as small rocks or piece of log in a forest road may cause the forest machine to be overturned while the machine riding over due to excessive its posture change. It was determined that the laser sensor could be a part of a sensor system capable of specifying the location and size of small obstacles. Not only this sensor system including ultrasonic and laser sensors can issue a warning of dangerous sections to drivers in forest forwarders currently in use, but also it can be used as a driving safety sensor in autonomous forest machine or remote-control forest machine in the future.

Measurement of Moving Object Velocity and Angle in a Quasi-Static Underwater Environment Through Simulation Data and Spherical Convolution (시뮬레이션 데이터와 Spherical Convolution을 통한 준 정적인 수중환경에서의 이동체 속도 및 각도 측정)

  • Baegeun Yoon;Jinhyun Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • In general, in order to operate an autonomous underwater vehicle (AUV) in an underwater environment, a navigation system such as a Doppler Log (DVL) using a Doppler phenomenon of ultrasonic waves is used for speed and direction estimation. However, most of the ultrasonic sensors in underwater is large for long-distance sensing and the cost is very high. In this study, not only canal neuromast on the fish's lateral lines but also superficial neuromast are studied on the simulation to obtain pressure values for each pressure sensor, and the obtained pressure data is supervised using spherical CNN. To this end, through supervised learning using pressure data obtained from a pressure sensor attached to an underwater vehicle, we can estimate the speed and angle of the underwater vehicle in a quasi-static underwater environment and propose a method for a non-ultrasonic based navigation system.