• Title/Summary/Keyword: and system dynamics

Search Result 5,374, Processing Time 0.038 seconds

Study on Nonlinearites of Short Term, Beat-to-beat Variability in Cardiovascular Signals (심혈관 신호에 있어서 단기간 beat-to-beat 변이의 비선형 역할에 관한 연구)

  • Han-Go Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • Numerous studies of short-term, beat-to-beat variability in cardiovascular signals have used linear analysis techniques. However, no study has been done about the appropriateness of linear techniques or the comparison between linearities and nonlinearities in short-term, beat-to-beat variability. This paper aims to verify the appropriateness of linear techniques by investigating nonlinearities in short-term, beat-to-beat variability. We compared linear autoregressive moving average(ARMA) with nonlinear neural network(NN) models for predicting current instantaneous heart rate(HR) and mean arterial blood pressure(BP) from past HRs and BPs. To evaluate these models. we used HR and BP time series from the MIMIC database. Experimental results indicate that NN-based nonlinearities do not play a significant role and suggest that 10 technique provides adequate characterization of the system dynamics responsible for generating short-term, beat-to-beat variability.

A Nonlinear Speed Control of a Permanent Magnet Synchronous Motor Using a Sequential Parameter Auto-Tuning Algorithm for Servo Equipments (서보 설비를 위한 순차적 파라미터 자동 튜닝 알고리즘을 사용한 영구자석 동기전동기의 비선형 속도 제어)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.114-123
    • /
    • 2005
  • A nonlinear speed control of a PMSM using a sequential parameter auto-tuning algorithm for servo equipments is presented. The nonlinear control scheme gives an undesirable output performance under the mismatch of the system parameters and load conditions. Recently, to improve the performance, an adaptive linearization scheme, a sliding mode control and an observer-based technique have been reported. Although a good performance can be obtained, the performance is not satisfactory any more under specific conditions such as a large inertia variation, a fast speed transient or an increased sampling time. The simultaneous estimation of principal parameters giving a direct influence on speed dynamics is generally not simple. To overcome this problem, a a sequential parameter auto-tuning algorithm at start-up is proposed, where dominant parameters are estimated in a prescribed regular sequence based on the method that one parameter is estimated during each interval. The proposed scheme is implemented on a PMSM using DSP TMS320C31 and the effectiveness is verified through simulations and experiments.

State Estimation for Underwater Vehicles by Means of Cascade Observers (계단식 관측기에 의한 수중 차의 상태추정)

  • Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.168-173
    • /
    • 2009
  • This paper investigates the estimation problem of vehicle velocity and propeller angular velocity on the underwater vehicle. Inspired by but different from a high-gain observer, the cascade observer features a cascade structure and adaptive observer gains. In doing so the cascade observer attempts to overcome some of the typical problems that may pose to a high-gain observer. As in the case of a high-gain observer, the cascade observer structure is simple and universal in the sense that it is independent of the system dynamics and parameters. A cascade observer is used for the estimation of velocity from measured position. In the 1st step of the observer, the output is estimated, and the 1st order derivative of measured output is estimated via the 2nd step of the observer. Also, nth order derivative of the output is estimated in the (n+1)th step of the observer. It is shown that the proposed observer guarantees globally asymptotical stability. By simulation results, the proposed observer scheme for the estimations of vehicle velocity and propeller angular velocity shows better performance than the scheme based on the existing observer.

Robust Vehicle Lateral Stability Controller Against Road Bank Angles (도로 횡경사 변화에 견실한 차량 횡안정성 제어기 설계)

  • Na, Ho Yong;Cho, KunHee;You, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.967-974
    • /
    • 2017
  • In this paper, a differential-braking-based yaw moment control system was developed to guarantee robust performance against road bank angle. A new target yaw rate model was established by combining the signal from a lateral acceleration sensor and 2-DOF single track model. In addition, a disturbance observer was utilized to take into account parameter uncertainties in yaw dynamics and to improve robust performance of the controller. CARSIM, which is a multi-DOF vehicle dynamic simulation tool, was used to verify the performance of the proposed controller in various driving scenarios. The simulation results indicate that the stability of the vehicle was robustly maintained by the controller, which is characterized by the reflection of the signal of a lateral acceleration sensor signal and by the compensation of the errors in the model parameters via the disturbance observer.

Design of DRM System in P2P Network Environment (P2P네트워크 환경을 위한 DRM 시스템 설계)

  • Lee Jeong-Gi;Kim Kuk-Se;Lee Gwang;Ahn Seong-Soo;Lee Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.829-832
    • /
    • 2006
  • The word P2P implies significant changes in current business dynamics. The P2P service enables individuals to be connected to the Internet for the direct provision of information and even downloads from one another without the conventional method of passing through search engines. This can be utilized to extend the path of retrieving information from limited web sites to personal and enterprise databases. That is, it is now possible for individuals to manage their own information on a national or global scope, share various information with other members, form communities of users interested in sharing homogeneous information, and utilize remote conference and remote education using groupware.

  • PDF

Formation Control of Mobile Robots using PID Controller with Neural Networks (신경회로망 PID 제어기를 이용한 이동로봇의 군집제어)

  • Kim, Yong-Baek;Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1811-1817
    • /
    • 2014
  • In this paper, a PID controller with interpolated gains by use of neural networks is proposed for the formation control problem that following robots track a leading robot with constant distances and angles when there are changes in the mass of the following robot. The whole control system is composed of a kinematic controller and a dynamic controller considering the robot dynamics. The dynamic controller is the PID controller with varying gains, and the proper gains are obtained for some representative masses of the follower robot by the genetic algorithm. Neural networks is trained using the genetic algorithm with the gain data obtained in the previous step. The trained neural network determines optimal PID gains for a random mass of following robot. Simulation studies show that for arbitrary masses of the tracking robot, the PID controller with interpolated gains by the trained neural network has better tracking performance than that of the PID controller with fixed gains.

Validation of Power Coefficient and Wake Analysis of Scaled Wind Turbine using Commercial CFD Program (상용 CFD 프로그램을 이용한 풍력터빈 축소모델 출력계수 검증 및 후류 해석)

  • Kim, Byoungsu;Paek, Insu;Yoo, Neungsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • A numerical simulation on the wake flow of a wind turbine which is a scaled version of a multi-megawatt wind turbine has been performed. Two different inlet conditions of averaged wind speed including one below and one above the rated wind speed were used in the simulation. Steady-state pitch angles of the blade associated with the two averaged wind speeds were imposed for the simulation. The steady state analysis based on the Reynolds averaged Navier-Stokes equations with the method of frame motion were used for the simulation to find the torque of the rotor and the wake field behind the wind turbine. The simulation results were compared with the results obtained from the wind tunnel testing. From comparisons, it was found that the simulation results on the turbine power are pretty close to the experimental values. Also, the wake results were relatively close to the experimental results but there existed some discrepancy in the shape of velocity deficit. The reason for the discrepancy is considered due to the steady state solution with the frame motion method used in the simulation. However, the method is considered useful for solutions with much reduced calculation time and reasonably good accuracy compared to the transient analysis.

Bordetella bronchiseptica bateriophage suppresses B. bronchiseptica-induced inflammation in swine nasal turbinate cells

  • Park, Ga Young;Lee, Hye Min;Yu, Hyun Jin;Son, Jee Soo;Park, Sang Joon;Song, Kyoung Seob
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1383-1388
    • /
    • 2018
  • The development of therapeutic bacteriophages will provide several benefits based on an understanding the basic physiological dynamics of phage and bacteria interactions for therapeutic use in light of the results of antibiotic abuse. However, studies on bacteriophage therapeutics against microbes are very limited, because of lack of phage stability and an incomplete understanding of the physiological intracellular mechanisms of phage. The major objective of this investigation was to provide opportunity for development of a novel therapeutic treatment to control respiratory diseases in swine. The cytokine array system was used to identify the secreted cytokines/chemokines after Bordetella bronchiseptica infection into swine nasal turbinate cells (PT-K75). We also performed the real-time quantitative PCR method to investigate the gene expression regulated by B. bronchiseptica infection or bacteriophage treatment. We found that B. bronchiseptica infection of PT-K75 induces secretion of many cytokines/chemokines to regulate airway inflammation. Of them, secretion and expression of IL-$1{\beta}$ and IL-6 are increased in a dose-dependent manner. Interestingly, membrane-bound mucin production via expression of the Muc1 gene is increased in B. bronchiseptica-infected PT-K75 cells. However, cytokine production and Muc1 gene expression are dramatically inhibited by treatment with a specific B. bronchiseptica bacteriophage (Bor-BRP-1). The regulation of cytokine profiles in B. bronchiseptica-induced inflammation by B. bronchiseptica bacteriophage is essential for avoiding inappropriate inflammatory responses. The ability of bacteriophages to downregulate the immune response by inhibiting bacterial infection emphasizes the possibility of bacteriophage-based therapies as a novel anti-inflammatory therapeutic strategy in swine respiratory tracts.

Nonlinear optimal control for reducing vibrations in civil structures using smart devices

  • Contreras-Lopez, Joaquin;Ornelas-Tellez, Fernando;Espinosa-Juarez, Elisa
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.307-318
    • /
    • 2019
  • The frequently excessive vibrations presented in civil structures during seismic events or service conditions may result in users' discomfort, or worst, in structures failure, producing economic and even human casualties. This work contributes in proposing the synthesis of a nonlinear optimal control strategy for semiactive structural control, with the main characteristic that the synthesis considers both the structure model and the semiactive actuator nonlinear dynamics, which produces a nonlinear system that requires a nonlinear controller design. The aim is to reduce the unwanted vibrations in the response of civil structures, by means of intelligent fluid semiactive actuator such as the Magnetorheological Damper (MRD), which is a device with a low level of power consumption. The civil structures for which the proposed control methodology can be applied are those admitting a state-dependent coefficient factorized representation model, such as buildings, bridges, among others. A scaled model of a three storey building is analyzed as a case study, whose dynamical response involves displacement, velocity and acceleration of each one of the storeys, subjected to the North-South component of the September 19th., 2017, Puebla-Morelos (7.1M), Mexico earthquake. The investigation rests on comparing the structural response over time for two different conditions: with no control device installed and with one MRD installed between the first floor and the ground, where a nonlinear optimal signal for the MRD input voltage is determined. Simulation results are presented to show the effectiveness of the proposed controller for reducing the building's dynamical response.

Numerical Investigation of Flows around Space Launch Vehicles at Mid-High Altitudes (중/고고도 영역에서의 우주발사체 주위 유동에 대한 수치적 연구)

  • Choi, Young Jae;Choi, Jae Hoon;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • In the present study, to investigate flows around space launch vehicles at mid-high altitudes efficiently, a three-dimensional unstructured mesh Navier-Stokes solver employing a Maxwell slip boundary condition was developed. Validation of the present flow solver was made for a blunted cone-tip configuration by comparing the results with those of the DSMC simulation and experiment. It was found that the present flow solver works well by capturing the velocity slip and the temperature jump on the solid surface more efficiently than the DSMC simulation. Flow simulations of space launch vehicles were conducted by using the flow solver. Mach number of 6 at the mid-high altitude around 86km was considered, and the flow phenomena at the mid-high altitude was discussed.