• Title/Summary/Keyword: and size optimization

Search Result 1,516, Processing Time 0.025 seconds

Size Effect in Failure of Tube Structure (관 구조물 파괴에서의 크기효과)

  • Kim, Duk-Hyun;Kim, Doo-Hwan;Kwak, Jin-Sung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.101-104
    • /
    • 2002
  • Almost all buildings/infrastructures made of composite materials are fabricated without proper design. Unlike airplane or automobile parts, prototype test is impossible. One cannot destroy 10 story buildings or 100-meter long bridges. People try to build 100-story buildings or several thousand meter long bridges. In order to realize "composites in construction", the following subjects must be studied in detail, for his design. Concept optimization, Simple method of analysis, Folded plate theory, Size effects in failure, and Critical frequency. Unlike the design procedure with conventional materials, his design should include material design, selection of manufacturing methods, and quality control methods, in addition to the fabrication method. In this paper size/scale effects in failure criteria is briefly explained for practicing engineers.engineers.

  • PDF

A Study on Size Optimization for Rocket Motor with a Torispherical Dome (토리구형 돔 형상을 갖는 연소관의 치수 최적화 설계 연구)

  • Choi, Young-Gwi;Shin, Kwang-Bok;Kim, Won-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.567-573
    • /
    • 2010
  • In this study, we evaluated the structural integrity and weight of a rocket motor with a torispherical dome by size optimization. Size optimization was achieved by first-order and sub-problem methods, using the Ansys Parametric Design Language (APDL). For rapid design verification, a modified 2D axisymmetric finite-element model was used, and the bolt pre-tension load was expressed as function of the ratio of the cross-sectional area. The thickness of the dome and the cylindrical part of the rocket motor were selected as the design parameters. Our results showed that the weight and structural integrity of the rocket motor at the initial design stage could be determined more rapidly and accurately with the modified 2D axisymmetric finite-element model than with the 3D finite-element model; further, the weight of the rocket motor could be saved to maximum of 17.6% within safety limit.

The Automotive Door Design with the ULSAB Concept Using Structural Optimization (구조 최적 설계기법을 이용한 ULSAB 개념의 자동차 도어 설계)

  • 신정규;송세일;이권희;박경진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.187-194
    • /
    • 2000
  • Weight reduction for an automobile body is being sought for the fuel efficiency and the energy conservation. One way of the efforts is adopting Ultra Light Steel Auto Body (ULSAB) concept. The ULSAB concept can be used for the light weight of an automobile door with the tailor welded blank (TWB). A design process is defined for the TWB. The inner panel of door is designed by the TWB and optimization. The design starts from an existing component. At first, the hinge and inner reinforcements are removed. In the conceptual design stage, topology optimization is conducted to find the distribution of variable thicknesses. The number of parts and the welding lines are determined from the topology design. In the detailed design process, size optimization is carried out to find thickness while stiffness constraints are satisfied. The final parting lines are determined by shape optimization.

  • PDF

A Study on Topology Optimization of the Tracked Vehicle Bottom Plate under Traveling Loading (주행시 궤도차량 바닥판의 위상최적설계에 관한 연구)

  • Hwang, Young-Jin;Kim, Jong-Bum;Lee, Seok-Soon;Choi, Chang-Gon;Son, Jae-Hong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.558-563
    • /
    • 2003
  • The tracked vehicle travel on off rod and on rod. So the tracked vehicle need a sufficient stiffness and a lightweight. In this study we performed FEA for the track vehicle and performed topology optimization based on the results of FEA. The displacements of road wheel are used as displacement constraint for topology optimization. We performed topology optimization with the control of the frame size which is the results of topology optimization and suggested the shaped of the tracked vehicle bottom plate of topology optimization

  • PDF

Differential Evolution Algorithms Solving a Multi-Objective, Source and Stage Location-Allocation Problem

  • Thongdee, Thongpoon;Pitakaso, Rapeepan
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.1
    • /
    • pp.11-21
    • /
    • 2015
  • The purpose of this research is to develop algorithms using the Differential Evolution Algorithm (DE) to solve a multi-objective, sources and stages location-allocation problem. The development process starts from the design of a standard DE, then modifies the recombination process of the DE in order improve the efficiency of the standard DE. The modified algorithm is called modified DE. The proposed algorithms have been tested with one real case study (large size problem) and 2 randomly selected data sets (small and medium size problems). The computational results show that the modified DE gives better solutions and uses less computational time than the standard DE. The proposed heuristics can find solutions 0 to 3.56% different from the optimal solution in small test instances, while differences are 1.4-3.5% higher than that of the lower bound generated by optimization software in medium and large test instances, while using more than 99% less computational time than the optimization software.

A cross-entropy algorithm based on Quasi-Monte Carlo estimation and its application in hull form optimization

  • Liu, Xin;Zhang, Heng;Liu, Qiang;Dong, Suzhen;Xiao, Changshi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.115-125
    • /
    • 2021
  • Simulation-based hull form optimization is a typical HEB (high-dimensional, expensive computationally, black-box) problem. Conventional optimization algorithms easily fall into the "curse of dimensionality" when dealing with HEB problems. A recently proposed Cross-Entropy (CE) optimization algorithm is an advanced stochastic optimization algorithm based on a probability model, which has the potential to deal with high-dimensional optimization problems. Currently, the CE algorithm is still in the theoretical research stage and rarely applied to actual engineering optimization. One reason is that the Monte Carlo (MC) method is used to estimate the high-dimensional integrals in parameter update, leading to a large sample size. This paper proposes an improved CE algorithm based on quasi-Monte Carlo (QMC) estimation using high-dimensional truncated Sobol subsequence, referred to as the QMC-CE algorithm. The optimization performance of the proposed algorithm is better than that of the original CE algorithm. With a set of identical control parameters, the tests on six standard test functions and a hull form optimization problem show that the proposed algorithm not only has faster convergence but can also apply to complex simulation optimization problems.

Optimal Design of a Convective MEMS Accelerometer (열대류형 초소형 가속도계의 최적 설계)

  • Park, Byoung-Kyoo;Kim, Joon-Won;Moon, Il-Kwon;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1951-1956
    • /
    • 2008
  • Various MEMS accelerometers are used in engineering applications including automobiles, mobile phones, military systems, and electronic devices. Among them, the thermal accelerometer employing the temperature difference induced by the convective flow inside the micro cavity has been a topic of interest. As the convective sensor does not utilize a solid proof mass, it is compact, lightweight, inexpensive to manufacture, sensitive and highly endurable to mechanical shock. However, the complexity of the convective flow and various design constraints make optimization of a device a crucial step before fabrication. In this work, optimization of a 2-axis thermal convective MEMS accelerometer is conducted based on 3-dimensional numerical simulation. Parametric studies are performed by varying the several design variables such as the heater shape/size, the cavity size and types of the gas medium and the position of temperature probes in the sensor. The results of optimal design are presented.

  • PDF

Study of Size Optimization for Skirt Structure of Composite Pressure Vessel (복합재 압력용기의 스커트 치수 최적화 설계 연구)

  • Kim, Jun Hwan;Shin, Kwang Bok;Hwang, Tae Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.31-37
    • /
    • 2013
  • This study aims to find the optimal skirt dimensions for a composite pressure vessel with a separated dome part. The size optimization for the skirt structure of the composite pressure vessel was conducted using a sub-problem approximation method and batch processing codes programmed using ANSYS Parametric Design Language (APDL). The thickness and length of the skirt part were selected as design variables for the optimum analysis. The objective function and constraints were chosen as the weight and the displacement of the skirt part, respectively. The numerical results showed that the weight of the skirt of a composite pressure vessel with a separated dome part could be reduced by a maximum of 4.38% through size optimization analysis of the skirt structure.

The analysis and optimization of dual armor plate considering EQPS (EQPS를 이용한 복합장갑의 해석 및 최적설계)

  • 박명수;유정훈;정동택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.111-118
    • /
    • 2004
  • For the precise analysis of high velocity impact problem though FEM with element erosive method, the adequate mesh size and critical equivalent plastic strain(EQPS) is chosen prior to the simulation. In this research, it is strongly required from a standpoint that critical EQPS is used to decide whether perforation occurs or not. The optimization of dual armor plate consisting of 4340 steel and 2024 aluminium against a die steel sphere with high-velocity has been suggested using Lagrangian explicit time-integration code, NET2D. The response surface method based on the design of experiment is utilized for the size optimization. The optimized thickness of each layer, in which perforation does not occur, the strength of multi-layer is maximized and total weight is minimized, is obtained at a constant velocity of a pellet with a designated total thickness.

  • PDF

Getting Feedback on a Compiler's Optimization Decisions, Enabling More Code-Optimization Opportunities

  • Min, Gyeong Il;Park, Sewon;Han, Miseon;Kim, Seon Wook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.450-454
    • /
    • 2015
  • Short execution time is the major performance factor for computer systems. This performance factor is directly determined by code quality, which is influenced by the compiler's optimizations. However, a compiler has limitations when optimizing source code due to insufficient information. Thus, if programmers can learn the reasons why a compiler fails to apply optimizations, they can rewrite code that is more easily understood by the compiler, and thus improve performance. In this paper, we propose a compiler that provides a programmer with reasons for failed optimization and recognizes programmer's additional information to obtain better optimization. As a result, we obtain performance improvement, i.e., reducing execution time and code size, by taking advantage of additional optimization opportunities.