• Title/Summary/Keyword: and receptors

Search Result 2,458, Processing Time 0.028 seconds

Association Study Between Dopamine Transporter Gene 40 bp VNTR and Antipsychotics-Induced Restless Legs Syndrome (도파민 수송체 유전자 다형성과 항정신병약물로 유발된 하지불안증후군의 연관성 연구)

  • Kang, Seung-Gul;Lee, Heon-Jeong;Choi, Jung-Eun;Kim, Leen;Jung, In-Kwa
    • Sleep Medicine and Psychophysiology
    • /
    • v.15 no.1
    • /
    • pp.39-43
    • /
    • 2008
  • Objectives: The pathophysiology of restless legs syndrome (RLS) is not obvious, but many promising theories involve dopaminergic deficiency and genetic causes. The RLS is presumed to occur more frequently among schizophrenic patients who take antipsychotics, most of which blocks the dopamine receptors. This study aimed to investigate whether dopamine transporter gene (DAT1) 40 base pair (bp) variable number of tandem repeat (VNTR) polymorphism is associated with the antipsychotic-induced RLS in schizophrenia. Methods: We determined the diagnosis of RLS among the 190 Korean schizophrenic patients by the diagnostic criteria of the International Restless Legs Syndrome Study Group (IRLSSG). Genotyping was performed for the 40bp VNTR in DAT1 gene using polymerase chain reaction. Results: We separated the schizophrenic patients into 44 patients with RLS and 146 patients without RLS. The genotype and allele frequencies did not differ significantly between two groups. Conclusions: These results suggest that DAT1 gene 40bp VNTR is not associated with the antipsychotic-induced RLS in schizophrenia. To confirm these results, larger-scale association study is needed in the future.

  • PDF

Expression of MEK1 Fusion Protein in Yeast for Developing Cell Based Assay System, a Major Substrate of LeTx (Yeast내에서 MEK1 융합 단백질 발현 및 Lethal Factor 활성 검증)

  • Hwang, Hye-Hyun;Kim, Joung-Mok;Choi, Kyoung-Jae;Park, Hae-Chul;Han, Sung-Hwan;Chung, Hoe-Il;Koo, Bon-Sung;Park, Joon-Shik;Yoon, Moon-Young
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.195-198
    • /
    • 2006
  • Lethal toxin is a critical virulence factor of anthrax. It is composed two protein: protective antigen (PA) and lethal factor (LF). PA binds to specific cell surface receptors and, forms a membrane channel that mediates entry of LF into the cell. LF is a zinc-dependent metalloprotease, which cleaves MKKs [MAPK (mitogen-activated protein kinase) kinases] at peptide bonds very close to their N-termini. In this study, we suggest application of cell-based assays in the early phase of drug discovery, with a particular focus on the use of yeast cells. We constructed MEK1 expression system in yeast to determine LF activity and approached cell-based assay system to screen inhibitors, in which the results covering the construction of LF-substrate in yeast expression vector, expression, and LF-mediated proteolysis of substrate were described. These results could provided the basic steps in design of cell-based assay system with the high efficiency, rapidly and easy way to screening of inhibitors.

Effect of Baclofen on the Cholinergic Nerve Stimulation in Isolated Rat Detrusor (흰쥐의 적출배뇨근에서 baclofen의 콜린성신경 억제작용)

  • Lee, Kwang-Youn;Lee, Keun-Mi;Choi, Eun-Mee;Choi, Hyoung-Chul;Ha, Jeoung-Hee;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.12 no.2
    • /
    • pp.246-259
    • /
    • 1995
  • This study aimed to investigate the mechanism of action of baclofen on the detrusor muscle isolated from rat. Rats (Sprague-Dawley) were sacrificed by decapitation and exsanguination. Horizontal muscle strips of $2mm{\times}15mm$ were prepared for isometric myography in isolated muscle chamber bubbled with 95% / 5%-$O_2$ / $CO_2$ at $37^{\circ}C$, and the pH was maintained at 7.4. Detrusor strips contracted responding to the electrical field stimulation (EFS) by 2 Hz, 20 msec, monophasic square wave of 60 VDC. The initial peak of EFS-Induced contraction was tended to be suppresed by ${\alpha},{\beta}$-methylene-adenosine 5'-triphosphate (mATP), a partial agonist of purinergic receptor, and baclofen, a $GABA_B$ receptor agonist (statistically nonsignificant). The late sustained contraction by EFS was suppressed significantly (p < 0.05) by additions of atropione, a cholinergic muscarinic receptor antagonist and baclofen. The adenosine 5'-triphosphate-induced contraction was completely abolished by mA TP but not by baclofen. In the presence of atropine, the subsequent addition of acetylcholine could not contract the muscle strips: but the addition of acetylcholine in the presence of baclofen evoked a contraction to a remarkable extent. These results suggest that in the condition of present study, the cholinergic innervation may play a more important role than the purinergic one, and baclofen suppresses the contractility of rat detrusor by the stimulation of the $GABA_B$ receptors to inhibit the release of neurotransmitter from the cholinergic nerve ending.

  • PDF

Anti-skin-aging Effect of Mori Folium through decreased Advanced glycation end product (AGEs) (최종당화산물 억제를 통한 상엽(桑葉)의 항피부노화 효과)

  • Lee, AhReum;Kim, SooHyun;Kim, SuJi;Kim, KyeongJo;Kwon, Ojun;Choi, JoonYoung;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.32 no.5
    • /
    • pp.7-12
    • /
    • 2017
  • Objectives : Recently, numerous studies reported that excessive generation of advanced glycation end products (AGEs) stimulated expression of skin wrinkle related proteins. This study aimed to evaluate inhibits skin wrinkle formation effect of Mori Folium (MF) through decreased AGEs. Methods : To evaluate the skin wrinkle inhibition effect of MF, SD-rats were divided into three groups; normal rats (Nor), AGEs-induced rats (Con), AGEs-induce rats treated with MF at dose of 100mg/kg body weight (MF). To induced AGEs, streptozotocin (50mg/kg) was injected intraperitoneally, and after 3 days, 100mM methyl glyoxal was administered orally for 3 weeks. After the experiment, the animal's dorsal skin tissues and serum were separated and tested. Results : The oral administration of MF suppressed the AGEs level in serum. Also, the AGEs in skin tissues was significantly reduced through treatment of MF compared with control group. Moreover, the expressions of AGEs related proteins such as polyclonal anti-$N^e$-(carboxymethyl) lysine (CML), anti-$N^e$-(carboxyethyl)lysine (CEL), AGE receptors (RAGE) were reduced in MF group compared with the control group in kidney and skin tissues. The matrix metallo proteinase-1 (MMP-1) reduced by MF treatment with the result that collagen type 1 alpha 2 (COL1A2) was improved that reduced by accumulation of AGEs. Conclusion : The evidence of this study indicate that oral administration of MF reduces the levels of AGEs in serum, skin, and kidney tissues. In conclusion, MF inhibit skin wrinkle formation, suggesting the potential of anti-wrinkle material.

A Cannabinoid Receptor Agonist N-Arachidonoyl Dopamine Inhibits Adipocyte Differentiation in Human Mesenchymal Stem Cells

  • Ahn, Seyeon;Yi, Sodam;Seo, Won Jong;Lee, Myeong Jung;Song, Young Keun;Baek, Seung Yong;Yu, Jinha;Hong, Soo Hyun;Lee, Jinyoung;Shin, Dong Wook;Jeong, Lak Shin;Noh, Minsoo
    • Biomolecules & Therapeutics
    • /
    • v.23 no.3
    • /
    • pp.218-224
    • /
    • 2015
  • Endocannabinoids can affect multiple cellular targets, such as cannabinoid (CB) receptors, transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and peroxisome proliferator-activated receptor ${\gamma}$($PPAR{\gamma}$). The stimuli to induce adipocyte differentiation in hBM-MSCs increase the gene transcription of the $CB_1$ receptor, TRPV1 and $PPAR{\gamma}$. In this study, the effects of three endocannabinoids, N-arachidonoyl ethanolamine (AEA), N-arachidonoyl dopamine (NADA) and 2-arachidonoyl glycerol (2-AG), on adipogenesis in hBM-MSCs were evaluated. The adipocyte differentiation was promoted by AEA whereas inhibited by NADA. No change was observed by the treatment of non-cytotoxic concentrations of 2-AG. The difference between AEA and NADA in the regulation of adipogenesis is associated with their effects on $PPAR{\gamma}$ transactivation. AEA can directly activate $PPAR{\gamma}$. The effect of AEA on $PPAR{\gamma}$ in hBM-MSCs may prevail over that on the $CB_1$ receptor mediated signal transduction, giving rise to the AEA-induced promotion of adipogenesis. In contrast, NADA had no effect on the $PPAR{\gamma}$ activity in the $PPAR{\gamma}$ transactivation assay. The inhibitory effect of NADA on adipogenesis in hBM-MSCs was reversed not by capsazepine, a TRPV1 antagonist, but by rimonabant, a $CB_1$ antagonist/inverse agonist. Rimonabant by itself promoted adipogenesis in hBM-MSCs, which may be interpreted as the result of the inverse agonism of the $CB_1$ receptor. This result suggests that the constantly active $CB_1$ receptor may contribute to suppress the adipocyte differentiation of hBM-MSCs. Therefore, the selective $CB_1$ agonists that are unable to affect cellular $PPAR{\gamma}$ activity inhibit adipogenesis in hBM-MSCs.

Role of Endothelium-derived Relaxing Factor in Cerebral Autoregulation in vivo (뇌혈류 자가조절에 대한 Endothelium-derived Relaxing Factor의 역할)

  • Hong Ki-Whan;Yu Sung-Suk;Rhim Byung-Yong
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.27-37
    • /
    • 1995
  • In anesthetized rats, we examined the possibility that endothelium-derived relaxing factor (EDRF) or nitric oxide (NO) released in response to cholinergic mechanism may contribute to the reflex autoregulation of cerebral blood flow. Suffusion with mock cerebrospinal fluid (CSF), containing acetylcholine (ACh, $10^{-9}{\sim}10^{-6}M$) evoked concentration-dependent vasodilatation of the resting pial artery (mean, $19.3{\pm}1.7{\mu}m$, n=36), which was significantly inhibited not only by $N{\omega}$-nitro-L-arginine (L-NNA, $10^{-5}M$) but also by methylene blue ($10^{-6}M$) and oxyhemoglobin ($10^{-6}M$). The muscarinic receptors in the endothelium of pial artery implicated in the release of EDRF were considered to be $M_1\;and\;M_3$ subtypes. When suffused with mock CSF containing L-arginine it caused a transient vasodilatation, which was strongly inhibited by LY 83583 ($10^{-5}M$), but not by L-NNA ($10^{-5}M$). Additionally, both ACh- and L-arginine-induced vasodilation were significantly inhibited by glibenclamide, a specific ATP-sensitive $K^+$ channel blocker. On the other hand, changes in pial arterial diameter were plotted as a function of changes in systemic arterial blood pressure. The slopes of regression lines for vasodilation and vasoconstriction were not affected by pretreatment with $10^{-5}M$ L-NNA, but significantly reduced by $3{\times}10^{-6}M$ glibenclamide. Thus it is suggested that the reflex vasodilation of rat pial arteries in response to a transient hypotension is not mediated by EDRF (NO).

  • PDF

Gintonin facilitates catecholamine secretion from the perfused adrenal medulla

  • Na, Seung-Yeol;Kim, Ki-Hwan;Choi, Mi-Sung;Ha, Kang-Su;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.629-639
    • /
    • 2016
  • The present study was designed to investigate the characteristics of gintonin, one of components isolated from Korean Ginseng on secretion of catecholamines (CA) from the isolated perfused model of rat adrenal gland and to clarify its mechanism of action. Gintonin (1 to $30{\mu}g/ml$), perfused into an adrenal vein, markedly increased the CA secretion from the perfused rat adrenal medulla in a dose-dependent fashion. The gintonin-evoked CA secretion was greatly inhibited in the presence of chlorisondamine ($1{\mu}M$, an autonomic ganglionic bloker), pirenzepine ($2{\mu}M$, a muscarinic $M_1$ receptor antagonist), Ki14625 ($10{\mu}M$, an $LPA_{1/3}$ receptor antagonist), amiloride (1 mM, an inhibitor of $Na^+/Ca^{2+}$ exchanger), a nicardipine ($1{\mu}M$, a voltage-dependent $Ca^{2+}$ channel blocker), TMB-8 ($1{\mu}M$, an intracellular $Ca^{2+}$ antagonist), and perfusion of $Ca^{2+}$-free Krebs solution with 5mM EGTA (a $Ca^{2+}$chelater), while was not affected by sodium nitroprusside ($100{\mu}M$, a nitrosovasodialtor). Interestingly, LPA ($0.3{\sim}3{\mu}M$, an LPA receptor agonist) also dose-dependently enhanced the CA secretion from the adrenal medulla, but this facilitatory effect of LPA was greatly inhibited in the presence of Ki 14625 ($10{\mu}M$). Moreover, acetylcholine (AC)-evoked CA secretion was greatly potentiated during the perfusion of gintonin ($3{\mu}g/ml$). Taken together, these results demonstrate the first evidence that gintonin increases the CA secretion from the perfused rat adrenal medulla in a dose-dependent fashion. This facilitatory effect of gintonin seems to be associated with activation of LPA- and cholinergic-receptors, which are relevant to the cytoplasmic $Ca^{2+}$ increase by stimulation of the $Ca^{2+}$ influx as well as by the inhibition of $Ca^{2+}$ uptake into the cytoplasmic $Ca^{2+}$ stores, without the increased nitric oxide (NO). Based on these results, it is thought that gintonin, one of ginseng components, can elevate the CA secretion from adrenal medulla by regulating the $Ca^{2+}$ mobilization for exocytosis, suggesting facilitation of cardiovascular system. Also, these findings show that gintonin might be at least one of ginseng-induced hypertensive components.

Synaptic Pattern of NMDA R1 upon the Direction-Selective Retinal Ganglion Cells in Developing Mouse Retina (발생 중 마우스 망막에서 방향특이성 신경절세포의 NMDA R1 수용체의 시냅스 패턴)

  • Lee, Jee-Geon;Kwon, Oh-Ju;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.533-540
    • /
    • 2013
  • Purpose: To investigate the synaptic pattern of NMDA glutamate receptor subtype NMDA R1 on the dendritic arbors of ON-OFF direction-selective retinal ganglion cells (DS-RGSs) in developing [(5,10) days postnatal (PN)] mouse retina. Methods: ON-OFF DS-RGCs were injected with Lucifer yellow and the cells were identified by their characteristic morphology. To identify glutamatergic excitatory input from bipolar cell, we used a marker for the membrane traffic motor protein kinesin. Results: We identified DS-RGCs in P5, and P10 mouse retina. The immunofluorescence labeling of NMDA R1 was most prominent in the IPL. Our results showed that their presence upon the entire dendritic arbor of ON-OFF DS-RGCs is without any evidence of asymmetry, which would predict direction selectivity. Conclusions: The glutamatergic input from bipolar cell reveals symmetry pattern in all periods of P5, and P10. The results may suggest that direction selectivity not lies in the specific pattern of NMDA R1 receptors.

Studies on Secretion of Catecholamines evoked by Panaxadiol in the Isolated Rabbit Adrenal Gland (파낙사디올의 가토적출부신의 카테콜아민 분비작용에 관한 연구)

  • Lim, Dong-Yoon;Park, Kyu-Baik;Kim, Kyu-Hyeong;Choi, Cheol-Hee;Bae, Jae-Woong;Kim, Moo-Won
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.31-42
    • /
    • 1988
  • The effect of Panaxadiol(PD), which is an active component of Korean Ginseng Saponins, on the secretion of catecholamines (CA) from the rabbit adrenal gland and its mode of action were investigated in the present study. $PD(400{\mu}g)$ increased significantly the secretion of CA from the isolated perfused rabbit adrenal gland. PD-induced secretion of CA was reduced markedly by treatment of atropine, CA secretion induced by Ach or PD was potentiated significantly by physostigmine-treatment. Chlorisondamine did inhibit CA secretion of PD or Ach. Perfusion of $PD(400{\mu}g)$ for 30 min enhanced the secretory activity of CA by Ach. Ouabain weakened the secretory response induced by PD but rather enhanced the response by Ach. Adenosine-treatment resulted in marked enhancement of CA secretion by PD or Ach, Pefusion with $Ca^{2+}-free$ Krebs containing EGTA (5 mM) for about 30 min totally blocked secretory effect induced by Ach and also weakened that by PD. From the above experimental results, it is suggested that PD causes secretion of catecholamines from the rabbit adrenal gland by a calcium-dependent exocytotic mechanism. The secretory effect of PD is due to the stimulation of cholinergic muscarinic and nicotinic receptors present in the adrenal gland and partly to a direct action on the chromaffin cell itself.

  • PDF

Fluoxetine Modulates Corticostriatal Synaptic Transmission through Postsynaptic Mechanism

  • Cho, Hyeong-Seok;Choi, Se-Joon;Kim, Ki-Jung;Lee, Hyun-Ho;Cho, Young-Jin;Kim, Seong-Yun;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Fluoxetine, widely used for the treatment of depression, is known to be a selective serotonin reuptake inhibitor (SSRI), however, there are also reports that fluoxetine has direct effects on several receptors. Employing whole-cell patch clamp techniques in rat brain slice, we studied the effects of fluoxetine on corticostriatal synaptic transmission by measuring the change in spontaneous excitatory postsynaptic currents (sEPSC). Acute treatment of rat brain slice with fluoxetine ($10{\mu}M$) significantly decreased the amplitude of sEPSC ($8.1{\pm}3.3$%, n=7), but did not alter its frequency ($99.1{\pm}4.7$%, n=7). Serotonin ($10{\mu}M$) also significantly decreased the amplitude ($81.2{\pm}3.9$%, n=4) of sEPSC, but did not affect its frequency ($105.8{\pm}8.0$, n=4). The effect of fluoxetine was found to have the same trend as that of serotonin. We also found that the inhibitory effect of fluoxetine on sEPSC amplitude ($93.0{\pm}1.9$%, n=8) was significantly blocked, but not serotonin ($84.3{\pm}1.6$%, n=4), when the brain slice was incubated with p-chloroamphetamine ($10{\mu}M$), which depletes serotonin from the axon terminals and blocks its reuptake. These results suggest that fluoxetine inhibits corticostriatal synaptic transmission through postsynaptic, and that these effects are exerted through both serotonin dependent and independent mechanism.