Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.137

A Cannabinoid Receptor Agonist N-Arachidonoyl Dopamine Inhibits Adipocyte Differentiation in Human Mesenchymal Stem Cells  

Ahn, Seyeon (Collge of Pharmacy, Seoul National University)
Yi, Sodam (Seoul Science High School)
Seo, Won Jong (Seoul Science High School)
Lee, Myeong Jung (Seoul Science High School)
Song, Young Keun (Seoul Science High School)
Baek, Seung Yong (Seoul Science High School)
Yu, Jinha (Collge of Pharmacy, Seoul National University)
Hong, Soo Hyun (Collge of Pharmacy, Seoul National University)
Lee, Jinyoung (Collge of Pharmacy, Seoul National University)
Shin, Dong Wook (Bioscience Research Institute, Amorepacific Corporation R&D Center)
Jeong, Lak Shin (Collge of Pharmacy, Seoul National University)
Noh, Minsoo (Collge of Pharmacy, Seoul National University)
Publication Information
Biomolecules & Therapeutics / v.23, no.3, 2015 , pp. 218-224 More about this Journal
Abstract
Endocannabinoids can affect multiple cellular targets, such as cannabinoid (CB) receptors, transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and peroxisome proliferator-activated receptor ${\gamma}$($PPAR{\gamma}$). The stimuli to induce adipocyte differentiation in hBM-MSCs increase the gene transcription of the $CB_1$ receptor, TRPV1 and $PPAR{\gamma}$. In this study, the effects of three endocannabinoids, N-arachidonoyl ethanolamine (AEA), N-arachidonoyl dopamine (NADA) and 2-arachidonoyl glycerol (2-AG), on adipogenesis in hBM-MSCs were evaluated. The adipocyte differentiation was promoted by AEA whereas inhibited by NADA. No change was observed by the treatment of non-cytotoxic concentrations of 2-AG. The difference between AEA and NADA in the regulation of adipogenesis is associated with their effects on $PPAR{\gamma}$ transactivation. AEA can directly activate $PPAR{\gamma}$. The effect of AEA on $PPAR{\gamma}$ in hBM-MSCs may prevail over that on the $CB_1$ receptor mediated signal transduction, giving rise to the AEA-induced promotion of adipogenesis. In contrast, NADA had no effect on the $PPAR{\gamma}$ activity in the $PPAR{\gamma}$ transactivation assay. The inhibitory effect of NADA on adipogenesis in hBM-MSCs was reversed not by capsazepine, a TRPV1 antagonist, but by rimonabant, a $CB_1$ antagonist/inverse agonist. Rimonabant by itself promoted adipogenesis in hBM-MSCs, which may be interpreted as the result of the inverse agonism of the $CB_1$ receptor. This result suggests that the constantly active $CB_1$ receptor may contribute to suppress the adipocyte differentiation of hBM-MSCs. Therefore, the selective $CB_1$ agonists that are unable to affect cellular $PPAR{\gamma}$ activity inhibit adipogenesis in hBM-MSCs.
Keywords
Endocannabinoids; Cannbinoid type 1 ($CB_1$) receptor; Adipogenesis; Human mesenchymal stem cells; Rimonabant;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bajzer, M., Olivieri, M., Haas, M. K., Pfluger, P. T., Magrisso, I. J., Foster, M. T., Tschop, M. H., Krawczewski-Carhuatanta, K. A., Cota, D. and Obici, S. (2011) Cannabinoid receptor 1 (CB1) antagonism enhances glucose utilisation and activates brown adipose tissue in diet-induced obese mice. Diabetologia 54, 3121-3131.   DOI
2 Bermudez-Siva, F. J., Serrano, A., Diaz-Molina, F. J., Sanchez Vera, I., Juan-Pico, P., Nadal, A., Fuentes, E. and Rodriguez de Fonseca, F. (2006) Activation of cannabinoid CB1 receptors induces glucose intolerance in rats. Eur. J. Pharmacol. 531, 282-284.   DOI
3 Bouaboula, M., Hilairet, S., Marchand, J., Fajas, L., Le Fur, G. and Casellas, P. (2005) Anandamide induced PPARgamma transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur. J. Pharmacol. 517, 174-181.   DOI
4 Cluny, N. L., Naylor, R. J., Whittle, B. A. and Javid, F. A. (2011) The effects of cannabidiolic acid and cannabidiol on contractility of the gastrointestinal tract of Suncus murinus. Arch. Pharm. Res. 34, 1509-1517.   DOI
5 D'Eon, T. M., Pierce, K. A., Roix, J. J., Tyler, A., Chen, H. and Teixeira, S. R. (2008) The role of adipocyte insulin resistance in the pathogenesis of obesity-related elevations in endocannabinoids. Diabetes 57, 1262-1268.   DOI
6 Di Marzo V and Matias I. (2005) Endocannabinoid control of food intake and energy balance. Nat. Neurosci. 8, 585-589.   DOI
7 Fong, T. M. and Heymsfield. S. B. (2009) Cannabinoid-1 receptor inverse agonists: current understanding of mechanism of action and unanswered questions. Int. J. Obes (Lond). 33, 947-955.   DOI
8 Gary-Bobo, M., Elachouri, G., Scatton, B., Le Fur, G., Oury-Donat, F. and Bensaid, M. (2006) The cannabinoid CB1 receptor antagonist rimonabant (SR141716) inhibits cell proliferation and increases markers of adipocyte maturation in cultured mouse 3T3 F442A preadipocytes. Mol. Pharmacol. 69, 471-478.
9 Huang, S. M., Bisogno, T., Trevisani, M., Al-Hayani, A., De Petrocellis, L., Fezza, F., Tognetto, M., Petros, T. J., Krey, J. F., Chu, C. J., Miller, J. D., Davies, S. N., Geppetti, P., Walker, J. M. and Di Marzo, V. (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. U.S.A. 99, 8400-8405.   DOI
10 Kenakin, T. and Williams, M. (2014) Defining and characterizing drug/compound function. Biochem. Pharmacol. 87, 40-63.   DOI
11 Klein, T. W. (2005) Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat. Rev. Immunol. 5, 400-411.   DOI
12 Lindsay, R. S., Funahashi, T., Hanson, R. L., Matsuzawa, Y., Tanaka, S., Tataranni, P. A., Knowler, W. C. and Krakoff, J. (2002) Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 360, 57-58.   DOI
13 Liu, J., Zhou, L., Xiong, K., Godlewski, G., Mukhopadhyay, B., Tam, J., Yin, S., Gao, P., Shan, X., Pickel, J., Bataller, R., O'Hare, J., Scherer, T., Buettner, C. and Kunos, G. (2012) Hepatic cannabinoid receptor-1 mediates diet-induced insulin resistance via inhibition of insulin signaling and clearance in mice. Gastroenterology 142, 1218-1228.   DOI
14 Milligan, G. (2003) Constitutive activity and inverse agonists of G protein-coupled receptors: a current perspective. Mol. Pharmacol. 64, 1271-1276.   DOI
15 Pertwee, R. G., Howlett, A. C., Abood, M. E., Alexander, S. P., Di Marzo, V., Elphick, M. R., Greasley, P. J., Hansen, H. S., Kunos, G., Mackie, K., Mechoulam, R. and Ross, R. A. (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol. Rev. 62, 588-631.   DOI   ScienceOn
16 O'Sullivan, S. E. and Kendall, D. A. (2010) Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology 215, 611-616.   DOI
17 Pacher, P. and Hasko, G. (2008) Endocannabinoids and cannabinoid receptors in ischaemia-reperfusion injury and preconditioning. Br. J. Pharmacol. 153, 252-262.   DOI
18 Pertwee, R. G. (2005) Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci. 76, 1307-1324.   DOI
19 Shin, D. W., Kim, S. N., Lee, S. M., Lee, W., Song, M. J., Park, S. M., Lee, T. R., Baik, J. H., Kim, H. K., Hong, J. H. and Noh, M. (2009) (-)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochem. Pharmacol. 77, 125-133.   DOI
20 Silvestri, C. and Di Marzo, V. (2013) The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 17, 475-90.   DOI
21 Song, D., Bandsma, R. H., Xiao, C., Xi, L., Shao, W., Jin, T. and Lewis, G. F. (2011) Acute cannabinoid receptor type 1 (CB1R) modulation influences insulin sensitivity by an effect outside the central nervous system in mice. Diabetologia 54, 1181-1189.   DOI
22 Viscomi, M. T., Oddi, S., Latini, L., Pasquariello, N., Florenzano, F., Bernardi, G., Molinari, M. and Maccarrone, M. (2009) Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/Akt pathway. J. Neurosci. 29, 4564-4570.   DOI
23 Tam, J., Cinar, R., Liu, J., Godlewski, G., Wesley, D., Jourdan, T., Szanda, G., Mukhopadhyay, B., Chedester, L., Liow, J. S., Innis, R. B., Cheng, K., Rice, K. C., Deschamps, J. R., Chorvat, R. J., McElroy, J. F. and Kunos, G. (2012) Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab. 16, 167-179.   DOI
24 Tam, J., Godlewski, G., Earley, B. J., Zhou, L., Jourdan, T., Szanda, G., Cinar, R. and Kunos, G. (2014) Role of adiponectin in the metabolic effects of cannabinoid type 1 receptor blockade in mice with dietinduced obesity. Am. J. Physiol. Endocrinol. Metab. 306, 457-468.   DOI
25 Teixeira, D., Pestana, D., Faria, A., Calhau, C., Azevedo, I., Monteiro, R. (2010) Modulation of adipocyte biology by ${\Delta}^9$-tetrahydrocannabinol. Obesity 18, 2077-2085.   DOI
26 Wiley, J. L., Marusich, J. A., Zhang, Y., Fulp, A., Maitra, R., Thomas, B. F. and Mahadevan, A. (2012) Structural analogs of pyrazole and sulfonamide cannabinoids: effects on acute food intake in mice. Eur. J. Pharmacol. 695, 62-70.   DOI