• Title/Summary/Keyword: and physicochemical properties

Search Result 3,372, Processing Time 0.028 seconds

Physicochemical and quality characteristics of the Korean and American blueberries (국내산과 미국산 블루베리의 이화학적 품질특성)

  • Moon, Hey-Kyung;Lee, Su-Won;Kim, Jong-Kuk
    • Food Science and Preservation
    • /
    • v.20 no.4
    • /
    • pp.524-531
    • /
    • 2013
  • We investigated the quality characteristics of the Korean and American blueberry. There was a similarity between the general composition and sugar content of the Korean and American values. The pH values showed a low of 3.46 in American blueberries to a high of 4.49 in Korean blueberries. The L (lightness), a (redness), and b (yellowness) value scores of the American blueberry were higher than the Korean blueberry. The levels of total phenol content and DPPH radical scavenging abilities were 205 mg%, 93.48% in the Korean blueberry and 182 mg%, 84.32% in the American blueberry, respectively. The free sugar levels showed fructose 2,514 mg%, glucose 2,315 mg%, and sucrose 69 mg% in the Korean blueberry, while the free sugar levels of the American blueberry showed fructose 2,106 mg%, glucose 1,825 mg%. The contents of organic acid were lactic acid and tartaric acid in the Korean blueberry, while the organic acid in the American blueberry contained tartaric acid, succinic acid, oxalic acid, and lactic acid. The Korean blueberry has 12 kinds of free amino acids, while the American blueberry has 9 kinds of free amino acids. Furthermore, the Korean blueberry contains 390 mg% of total amino acids, which was higher than 32% in the American blueberry with 295 mg% of total amino acids. The fatty acid contents of the American blueberry (2,897 mg%) was higher than that of the Korean blueberry (2,783 mg%) as well as in the oleic acid, linoleic acid, and palmitic acid. The mineral contents of all the samples were P>K>Ca>Mg, respectively. Given the above results, the Korean blueberry bioactive chemicals or properties were thought to be somewhat higher than the American blueberry.

Physico-chemical and Sensory Characteristics of Cooked Sausage Substituted with KCl or MgCl2 for NaCl (KCl 또는 MgCl2의 NaCl 대체 소시지의 이화학적 및 관능적 특성)

  • Jin, Sang-Keun;Kim, Il-Suk;Hur, In-Chul;Nam, Sang-Hae;Kang, Suk-Nam;Shin, Daekeun
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.81-89
    • /
    • 2011
  • This study was carried out to investigate changes in physicochemical and sensory properties of cooked sausages replaced sodium chloride (NaCl) to potassium chloride (KCl) or magnesium chloride ($MgCl_2$) during storage for 30 days under $4^{\circ}C$. All sausages were prepared with different combination of salts as follow; CTL (1.5% NaCl), KCL (0.9% NaCl+0.6% KCl), MCL (0.9% NaCl+0.6% $MgCl_2$), KML (0.9% NaCl+0.3% KCl+0.3% $MgCl_2$) and PST (1.5% PanSalt). Among sausages moisture content in KML was the highest (p<0.05). Lightness and redness in CTL were lower than those of other treatments, but MCL and KML containing $MgCl_2$ showed higher CIE $L^*$ and $a^*$ values than CTL. The pH in CTL was the highest during storage, however, no significant difference was determined between two treatments, MCL and KML (p>0.05). Crude fat content and water holding capacity (WHC), hardness and cohesiveness of MCL sausages were higher than those of CTL. In sensory characteristics of cooked sausages, saltness in MCL was the lowest during 10 and 20 days of storage (p<0.05). Yellowness in PST was lower than other treatmeants. Gumminess and chewiness of texture property of sausages from MCL and KML were higher than CTL. The results indicate that the replacement of NaCl by KCl improved texture, but meat color was not improved as expected. In contrast, the replacement of NaCl by $MgCl_2$ enhanced color, texture and WHC, whereas partial replacement of NaCl by $MgCl_2$ must reduce bitter taste as compared to sausages manufactured with a NaCl only. Therefore, $MgCl_2$ may be a salt replacing NaCl in cooked pork sausages.

Coarse Woody Debris (CWD) Respiration Rates of Larix kaempferi and Pinus rigida: Effects of Decay Class and Physicochemical Properties of CWD (일본잎갈나무와 리기다소나무 고사목의 호흡속도: 고사목의 부후등급과 이화학적 특성의 영향)

  • Lee, Minkyu;Kwon, Boram;Kim, Sung-geun;Yoon, Tae Kyung;Son, Yowhan;Yi, Myong Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.1
    • /
    • pp.40-49
    • /
    • 2019
  • Coarse woody debris (CWD), which is a component of the forest ecosystem, plays a major role in forest energy flow and nutrient cycling. In particular, CWD isolates carbon for a long time and is important in terms of slowing the rate of carbon released from the forest to the atmosphere. Therefore, this study measured the physiochemical characteristics and respiration rate ($R_{CWD}$) of CWD for Larix kaempferi and Pinus rigida in temperate forests in central Korea. In summer 2018, CWD samples from decay class (DC) I to IV were collected in the 14 forest stands. $R_{CWD}$ and physiochemical characteristics were measured using a closed chamber with a portable carbon dioxide sensor in the laboratory. In both species, as CWD decomposition progressed, the density ($D_{CWD}$) of the CWD decreased while the water content ($WC_{CWD}$) increased. Furthermore, the carbon concentrations did not significantly differ by DC, whereas the nitrogen concentration significantly increased and the C/N ratio decreased. The respiration rate of L. kaempferi CWD increased significantly up to DC IV, but for P. rigida it increased to DC II and then unchanged for DC II-IV. Accordingly, except for carbon concentration, all the measured characteristics showed a significant correlation with $R_{CWD}$. Multiple linear regression showed that $WC_{CWD}$ was the most influential factor on $R_{CWD}$. $WC_{CWD}$ affects $R_{CWD}$ by increasing microbial activity and is closely related to complex environmental factors such as temperature and light conditions. Therefore, it is necessary to study their correlation and estimate the time-series pattern of CWD moisture.

Study on Confectionary Properties of Chou made with Flour of Rice and Rice-Wheat mixture (미분을 이용한 chou의 제과특성 연구)

  • 김명애;오승희
    • Korean journal of food and cookery science
    • /
    • v.11 no.1
    • /
    • pp.69-76
    • /
    • 1995
  • This study was concentrated on the subject of chou formation and physicochemical characteristics on medium flour mixed with 0, 25, 50, 75, 100% of rice flour in order to clarify the possibility to substitute rice flour for wheat flour on chou preparation. The water holding capacity, swelling power, and maximum viscosity were higher in rice flour than those in medium flour but the initial pasting temperature was equal to 65$^{\circ}C$ in the two flour groups. The ratio of setback during cooling became 0.94 in the rice flour and 1.14 in the medium flour. So, the rice flour showed a slow tendency during gel formation as compared with the medium flour. The volumes of the rice choux were ranged from 80.0% to 89.0% according to the mixing ratio of medium flour as compared with that of the chou of wheat flour. But, the choux formation were increased as much as 108.8% out the paste added gelation of glutinous substance and 124.4% at the paste added Span20 of emulsifier compared to the non-addition treatment. The paste of rice flour added gelatin and Span20 showed better dispersion of components, especially, the small granules of lipid were fairly or plentifully dispersed in the paste added Span20 due to emulsifying activity. In sensory evaluation, the chou of l00% rice flour was inferior to that of medium flour on cavity-forming but the choux of wheat flour mixed with 25%, 50%, and 75% of rice flour were equal or superior to that of medium flour on all characteristics tested such as appearance, surface color, cavity-forming, chewiness, and taste. There were no significant differences on the cavity-forming expansion and taste between choux of rice flour and wheat flour Therefore, the results of this study made conclusion that rice flour would be substituted for wheat flour on the chou preparation.

  • PDF

Uptake and Recovery of Urea-15N Blended with Different Rates of Composted Manure (퇴비의 혼합 시비율에 따른 Urea-15N의 이용율 및 회수율)

  • Ro, Hee-Myong;Choi, Woo-Jung;Yun, Seok-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.376-383
    • /
    • 2003
  • To utilize composts more efficiently, combining composts with fertilizer to meet crop requirements is an appealing alternative. A pot experiment was conducted to study the effect of application rate of composted pig manure blended with fertilizer on the availability and loss of fertilizer-N. Chinese cabbage (Brassica campestris L. cv. Samjin) plants were cultivated for 30 and 60 days. 15N-Labeled urea ($5.24\;^{15}N\;atom\;%$) was added to soil at $450mg\;N\;kg^{-1}$, and unlabeled compost ($0.37\;^{15}N\;atom\;%$) was added at 0, 200, 400, and $600mg\;N\;kg^{-1}$. The amount of plant-N derived from urea was not affected by compost application at rate of $200mg\;N\;kg^{-1}$. However, compost application at 400 and $600mg\;N\;kg^{-1}$ significantly (P<0.05) increased plant assimilation of N from urea irrespective of sampling time, probably because of physicochemical changes in the soil properties allowing urea-N to be assimilated more efficiently. The amount of immobilized urea-N increased with increasing rate of compost application at both growth periods, as the results of increased microbial activities using organic C in the compost. Total recovery of urea-N (as percentage of added N) by Chinese cabbage and soil also increased with increasing rate of compost from 71.5 to 95.6% and from 67.0 to 88.2% at the 30- and 60-days of growth, respectively. These results suggest that increasing rate of compost blending increases plant uptake of fertilizer-N and enhances immobilization of fertilizer-N, which leads to decrease in loss of fertilizer-N. However, information about the fate of immobilized N during future crop cultivation is necessary to verify long-term effect of compost blending.

Quality Factors of Freshness and Palatability of Hanwoo from their Physicochemical and Sensorial Properties (한우의 이화학적, 관능적 특성을 통한 신선도와 맛의 품질 인자 설정)

  • Moon, Ji-Hye;Sung, Misun;Kim, Jong-Hun;Kim, Byeong Sam;Kim, Yoonsook
    • Food Science of Animal Resources
    • /
    • v.33 no.6
    • /
    • pp.796-805
    • /
    • 2013
  • This study was conducted to investigate the relationship between quality factors and freshness or palatability of Hanwoo beef according to storage condition. The drip loss, cooking loss, volatile basic nitrogen (VBN), thiobarbituric acid reactive substance (TBARS), total viable counts (TVC) and sensorial characteristics of Hanwoo beef (raw and cooked) were investigated during storage for 36 d at 0 and $10^{\circ}C$. The drip loss, cooking loss, VBN, and TBARS were increased during storage period. The correlation between these factors and freshness was shown to be highly significant at both $10^{\circ}C$ than $0^{\circ}C$. Especially, correlation of between the cooking loss and freshness of Hanwoo beef showed high significance (p<0.01) at higher storage temperature. The correlation coefficient between factors such as VBN, cooking loss, and TVC and palatability were decreased with increased storage temperature. As a statistical analysis result, a multiple regression equation of $Y_1=10.768-0.706X_1$ (Drip loss) with $R^2=0.87$ was obtained for freshness evaluation of Hanwoo beef. Also, multiple regression with drip loss ($X_1$) and TVC ($X_5$) increased the coefficient of determination for sensorial palatability ($Y_2$) to $R^2=0.95$ with a regression equation of $Y_2=9.702-0.438X_1(Drip\;loss)-0.232X_5(TVC)$.

The Effects of Added Sesame Powder on the Quality of Baechukimchi (참깨가루의 첨가가 배추김치의 품질에 미치는 영향)

  • Moon, Sung-Won;Lee, Myung-Ki
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.1
    • /
    • pp.52-61
    • /
    • 2009
  • In this study, we evaluated the effects of sesame powder on the fermentation of Baechukimchi, by assessing sensory, physicochemical, and microbiological properties during up to 25 days of fermentation. The Baechukimchi, with various levels [0, 1, 2, 3, 4%(w/w)] of sesame powder, was fermented at $10^{\circ}C$. The product containing the control and 1% sesame powder evidenced the highest scores for appearance and smell. Taste and texture were highest in the 1% and 2% sesame powder, and the overall acceptability was highest in the 2% sesame powder sample. During fermentation, titratable acidity increased while pH gradually decreased. pH was higher in the sample with sesame powder than in the control, and the titratable acidity increased with increasing sesame powder content on day O. Reducing sugar increased sharply during fermentation, and then gradually decreased. In particular, the 2% sesame powder sample maintained the highest content. Total vitamin C was slightly increased at initial fermentation and then steadily decreased. The total polyphenol content and antioxidant effect of the experimental groups with added sesame powder were higher than those of the controls. Additionally, the time required to achieve maximum levels of lactic acid bacteria, as determined by log numbers of cells and total viable cells, were more delayed in the experimental groups with added sesame powder than in the controls. Our results indicated that the Baechukimchi with $1{\sim}2%$ added sesame powder was acceptable.

  • PDF

Effects of Added Harvey Powder on the Quality of Yulmoo Kimchi (톳가루의 첨가가 열무김치의 품질에 미치는 영향)

  • Moon, Sung-Won;Lee, Myung-Ki
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.3
    • /
    • pp.435-443
    • /
    • 2011
  • In this study, we evaluated the effects of harvey powder on the fernentation of Yulmoo Kimchi, by measuring sensory, physicochemical, and microbiological properties during fermentation up to 31 days. The Yulmoo Kimchi, with various levels [0, 0.1, 0.2, 0.3, 0.4% (w/w)] of harvey powder, was fermented at $10^{\circ}C$. The product containing the control evidenced the highest scores for appearance and smell. Taste, carbonated taste, texture and overall acceptability were highest in the 0.1% harvey powder and control. During fermentation, titratable acidity increased while pH gradually decreased. Reducing sugar showed no difference at initial fermentation and then steadily decreased. Total vitamin C was gradually decreased during fermentation and reduced sharply after 10 days, and then almost maintained. Total polyphenol content was the highest in the 0.3% harvey powder on day 0 and maintained in all samples thereafter. Antioxidant effect of the Yulmoo Kimchi with 0.1% harvey powder was shown to be the highest. Also, the time required to achieve maximum levels of lactic acid bacteria, as determined by log numbers of cells and total viable cells, were more delayed in the experimental groups with added harvey powder than in the controls. Our results indicated that the Yulmoo Kimchii with below 0.1% added harvey powder was acceptable.

Comparison of quality characteristics between seasonal cultivar of salted-Kimchi cabbage (Brassica rapa L. ssp. Pekinesis) (계절별 절임배추의 품질 특성 비교)

  • Ku, Kyung Hyung;Choi, Eun Jeong;Jeong, Moon Cheol
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.512-519
    • /
    • 2014
  • This study was carried to investigate the physicochemical and microbiological characteristics of seasonal salted-Kimchi cabbage order to provide basic data for optimal salting and storage condition of seasonal Kimchi cabbage. Generally, fall season samples had slightly higher pH and acidity value than the other seasonal salted Kimchi cabbage. The soluble solids content of spring, summer, fall and winter samples were 5.95%, 6.18%, 6.29% and 7.76%, respectively. The salt content of all the seasonal salted Kimchi cabbage samples were insignificant. The number of microbial bacteria in the summer samples were generally much more significant than spring and winter samples. There was no significant difference in the color of seasonal salted Kimchi cabbage. As for the texture properties, the firmest samples in the surface rupture test were the spring samples (force: 4.92 kg), and the hardest samples in the puncture test were the summer samples (force: 11.71 kg). In the correlation analysis of the quality characteristics of seasonal samples, the soluble solids content and hardness of the seasonal salted Kimchi cabbage was significantly correlated at 1% significance level. Also, in the principal component analysis, F1 and F2 were shown to explain 27.28% and 35.59% of the total variance (62.87%), respectively. The hierarchical cluster analysis of the quality characteristics of seasonal samples, the samples were divided into three groups: spring cabbage group, summer cabbage group and fall and winter cabbage group.

Origin and Source Appointment of Sedimentary Organic Matter in Marine Fish Cage Farms Using Carbon and Nitrogen Stable Isotopes (탄소 및 질소 안정동위원소를 활용한 어류 가두리 양식장 내 퇴적 유기물의 기원 및 기여도 평가)

  • Young-Shin Go;Dae-In Lee;Chung Sook Kim;Bo-Ram Sim;Hyung Chul Kim;Won-Chan Lee;Dong-Hun Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.99-110
    • /
    • 2022
  • We investigated physicochemical properties and isotopic compositions of organic matter (δ13CTOC and δ 15NTN) in the old fish farming (OFF) site after the cessation of aquaculture farming. Based on this approach, our objective is to determine the organic matter origin and their relative contributions preserved at sediments of fish farming. Temporal and spatial distribution of particulate and sinking organic matter(OFF sites: 2.0 to 3.3 mg L-1 for particulate matter concentration, 18.8 to 246.6 g m-2 day-1 for sinking organic matter rate, control sites: 2.0 to 3.5 mg L-1 for particulate matter concentration, 25.5 to 129.4 g m-2 day-1 for sinking organic matter rate) between both sites showed significant difference along seasonal precipitations. In contrast to variations of δ13CTOC and δ15NTN values at water columns, these isotopic compositions (OFF sites: -21.5‰ to -20.4‰ for δ13 CTOC, 6.0‰ to 7.6‰ for δ15NTN, control sites: -21.6‰ to -21.0‰ for δ13CTOC, 6.6‰ to 8.0‰ for δ15NTN) investigated at sediments have distinctive isotopic patterns(p<0.05) for seawater-derived nitrogen sources, indicating the increased input of aquaculture-derived sources (e.g., fish fecal). With respect to past fish farming activities, representative sources(e.g., fish fecal and algae) between both sites showed significant difference (p<0.05), confirming predominant contribution (55.9±4.6%) of fish fecal within OFF sites. Thus, our results may determine specific controlling factor for sustainable use of fish farming sites by estimating the discriminative contributions of organic matter between both sites.