Browse > Article
http://dx.doi.org/10.11614/KSL.2022.55.2.099

Origin and Source Appointment of Sedimentary Organic Matter in Marine Fish Cage Farms Using Carbon and Nitrogen Stable Isotopes  

Young-Shin Go (National Institute of Fisheries Science, Marine Environment Research Division)
Dae-In Lee (National Institute of Fisheries Science, Marine Environment Research Division)
Chung Sook Kim (National Institute of Fisheries Science, Marine Environment Research Division)
Bo-Ram Sim (Fisheries Resources and Environment Division, West Sea Fisheries Research Institute, National Institute of Fisheries Science)
Hyung Chul Kim (National Institute of Fisheries Science, Research and Development Planning Division)
Won-Chan Lee (National Institute of Fisheries Science, Marine Environment Research Division)
Dong-Hun Lee (National Institute of Fisheries Science, Marine Environment Research Division)
Publication Information
Abstract
We investigated physicochemical properties and isotopic compositions of organic matter (δ13CTOC and δ 15NTN) in the old fish farming (OFF) site after the cessation of aquaculture farming. Based on this approach, our objective is to determine the organic matter origin and their relative contributions preserved at sediments of fish farming. Temporal and spatial distribution of particulate and sinking organic matter(OFF sites: 2.0 to 3.3 mg L-1 for particulate matter concentration, 18.8 to 246.6 g m-2 day-1 for sinking organic matter rate, control sites: 2.0 to 3.5 mg L-1 for particulate matter concentration, 25.5 to 129.4 g m-2 day-1 for sinking organic matter rate) between both sites showed significant difference along seasonal precipitations. In contrast to variations of δ13CTOC and δ15NTN values at water columns, these isotopic compositions (OFF sites: -21.5‰ to -20.4‰ for δ13 CTOC, 6.0‰ to 7.6‰ for δ15NTN, control sites: -21.6‰ to -21.0‰ for δ13CTOC, 6.6‰ to 8.0‰ for δ15NTN) investigated at sediments have distinctive isotopic patterns(p<0.05) for seawater-derived nitrogen sources, indicating the increased input of aquaculture-derived sources (e.g., fish fecal). With respect to past fish farming activities, representative sources(e.g., fish fecal and algae) between both sites showed significant difference (p<0.05), confirming predominant contribution (55.9±4.6%) of fish fecal within OFF sites. Thus, our results may determine specific controlling factor for sustainable use of fish farming sites by estimating the discriminative contributions of organic matter between both sites.
Keywords
marine fish cage farm; total organic carbon; total nitrogen; stable isotopes; bayesian mixing model;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Challouf, R., A. Hamza, M. Mahfoudhi, K. Ghozzi and M.N. Bradai. 2017. Environmental assessment of the impact of cage fish farming on water quality and phytoplankton status in Monastir Bay (eastern coast of Tunisia). Aquaculture International 25(6): 2275-2292.   DOI
2 Chamberlain, J., T.F. Fernandes, P. Read, T.D. Nickell and I.M. Davies. 2001. Impacts of biodeposits from suspended mussel (Mytilus edulis L.) culture on the surrounding surficial sediments. ICES Journal of Marine Science 58(2): 411-416.   DOI
3 Choi, A., B. Kim, J.S. Mok, J. Yoo, J.B. Kim, W.C. Lee and J.H Hyun. 2020. Impact of finfish aquaculture on biogeochemical processes in coastal ecosystems and elemental sulfur as a relevant proxy for assessing farming condition. Marine Pollution Bulletin 150: 110635.
4 Choi, M., H.C. Kim, D.W. Hwang, I.S. Lee, Y.S. Kim, Y.J. Kim and H.G Choi. 2013. Organic enrichment and pollution in surface sediments from shellfish farming in Yeoja Bay and Gangjin Bay, Korea. Korean Journal of Fisheries and Aquatic Sciences 46(4): 424-436.   DOI
5 Cloern, J.E., E.A. Canuel and D. Harris. 2002, Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnology and Oceanography 47(3): 713-729.   DOI
6 Costanzo, S.D., J. Udy, B. Longstaff and A. Jones. 2005. Using nitrogen stable isotope ratios(±15N) of macroalgae to determine the effectiveness of sewage upgrades: changes in the extent of sewage plumes over four years in Moreton Bay, Australia. Marine Pollution Bulletin 51(1-4): 212-217.   DOI
7 Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12(1-2):133-149.   DOI
8 Crawford, C.M., C.K. Macleod and I.M. Mitchell. 2003. Effects of shellfish farming on the benthic environment. Aquaculture 224(1-4): 117-140.   DOI
9 Dahlback, B. and L.A.H. Gunnarsson. 1981. Sedimentation and sulfate reduction under a mussel culture. Marine Biology 63(3): 269-275.   DOI
10 Derrien, M., M.S. Kim, G. Ock, S. Hong, J. Cho, K.H. Shin and J. Hur. 2018. Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy. Science of The Total Environment 618: 569-578.   DOI
11 Ding, H. and M.Y. Sun. 2005. Biochemical degradation of algal fatty acids in oxic and anoxic sediment-seawater interface systems: effects of structural association and relative roles of aerobic and anaerobic bacteria. Marine Chemistry 93(1): 1-19.   DOI
12 Ehleringer, J.R. and P.W. Rundel. 1989. Stable isotopes: history, units, and instrumentation, p. 1-15. In: Stable isotopes in ecological research. Springer, New York, NY.
13 Ervik, A., P.K. Hansen, J. Aure, A. Stigebrandt, P. Johannessen and T. Jahnsen. 1997. Regulating the local environmental impact of intensive marine fish farming I. The concept of the MOM system (Modelling-Ongrowing fish farms-Monitoring). Aquaculture 158(1-2): 85-94.   DOI
14 FAO (Food and Agriculture Organization of the United Nations). 2006. The state of world fisheries and aquacultures, Rome, Italy, 176.
15 FAO (Food and Agriculture Organization of the United Nations). 2020. The state of world fisheries and aquaculture. Rome, Italy, 1-224.
16 Fan, X., H. Wei, Y. Yuan and L. Zhao. 2009. Vertical structure of tidal current in a typically coastal raft-culture area. Continental Shelf Research 29(20): 2345-2357.   DOI
17 Fry, B. 1988. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnology and Oceanography 33(5): 1182-1190.   DOI
18 Hedges, J.I., R.G. Keil and R. Benner. 1997. What happens to terrestrial organic matter in the ocean?. Organic geochemistry 27(5-6): 195-212.   DOI
19 Hall, A.E., R.G. Mutters and G.D. Farquhar. 1992. Genotypic and drought-induced differences in carbon isotope discrimination and gas exchange of cowpea. Crop Science 32(1): 1-6.   DOI
20 Heckathorn, S.A., S.J. McNaughton, J.S. Coleman, R.F. Sage and R.K. Monson. 1999. C4 plants and herbivory. C4 plant biology. pp. 285-312.
21 Kaehler, S., E.A. Pakhomov, R.M. Kalin and S. Davis. 2006. Trophic importance of kelp-derived suspended particulate matter in a through-flow sub-Antarctic system. Marine Ecology Progress Series 316: 17-22.   DOI
22 Kang, S., J.H. Kim, D. Kim, H. Song, J.S. Ryu, G. Ock and K.H Shin. 2019. Temporal variation in riverine organic carbon concentrations and fluxes in two contrasting estuary systems: Geum and Seomjin, South Korea. Environment International 133: 105126.
23 Kim, B.M.N., A. Choi, S.U. An, H.C. Kim, R.H. Jung, W.C. Lee and J.H. Hyun. 2011. Rates of sulfate reduction and iron reduction in the sediment associated with abalone aquaculture in the southern coastal waters of Korea. Ocean and Polar Research 33(4): 435-445.   DOI
24 Kim, M.S., W.S. Lee, K. Suresh Kumar, K.H. Shin, W. Robarge, M. Kim and S.R. Lee. 2016. Effects of HCL pretreatment, drying, and storage on the stable isotope ratios of soil and sediment samples. Rapid Communications in Mass Spectrometry 30(13): 1567-1575.   DOI
25 Kim, M.S., Y.J. Lee, K.G. An, B.H. Kim, S.J. Hwang and K.H. Shin. 2014. Allochthonous organic matter contribution to foodweb in Shingu agricultural researvoir after rainfall period. Korean Journal of Ecology and Environment 47(1): 53-61.   DOI
26 KMI (Korea Maritime Institute). 2019. p. 1-214. In: A Study on Environmental Improvements of Aquaculture Farms. Busan, Korea.
27 Lee, J.S., K.S. Bahk, B.J. Khang, Y.T. Kim, J.H. Bae, S.S. Kim and O.I. Choi. 2010. The development of a benthic chamber (BelcI) for benthic boundary layer studies. The Sea 15(1): 41-50.
28 Koh, H.J., S.E. Park, H.K. Cha, D.S. Chang and J.H. Koo. 2013. Coastal eutrophication caused by effluent from aquaculture ponds in Jeju. Journal of the Korean Society of Marine Environment & Safety 19(4): 315-326.   DOI
29 Kutti, T., A. Ervik and P.K. Hansen. 2007. Effects of organic effluents from a salmon farm on a fjord system. I. Vertical export and dispersal processes. Aquaculture 262(2-4): 367-381.   DOI
30 Kwon, J.N., R.H. Jung, Y.S. Kang, K.H. An and W.C. Lee. 2005. Environmental management of marine cage fish farms using numerical modelling. The Sea 10(4): 181-195.
31 Lee, J.S., S.H. Kim, Y.T. Kim, S.J. Hong, J.H. Han, J.H. Hyun and K.H Shin. 2012. Influence of sea squirt (Halocynthia roretzi) aquaculture on benthic-pelagic coupling in coastal waters: A study of the South Sea in Korea. Estuarine, Coastal and Shelf Science 99: 10-20.   DOI
32 Liu, Y., H. Huang, L. Yan, X. Liu and Z. Zhang. 2016. Influence of suspended kelp culture on seabed sediment composition in Heini Bay, China. Estuarine, Coastal and Shelf Science 181: 39-50.   DOI
33 Mariotti, A. 1983. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303(5919): 685-687.   DOI
34 Mayor, D.J., A.F. Zuur, M. Solan, G.I. Paton and K. Killham. 2010. Factors affecting benthic impacts at Scottish fish farms. Environmental Science & Technology 44(6): 2079-2084.   DOI
35 Mayor, D.J., N.B. Gray, G.S. Hattich and B. Thornton. 2017. Detecting the presence of fish farm-derived organic matter at the seafloor using stable isotope analysis of phospholipid fatty acids. Scientific Reports 7(1): 1-10.   DOI
36 NIFS. 2019. Technical report of national institute of fisheries science, 1097-1116.
37 Mazzola, A., S. Mirto, T. La Rosa, M. Fabiano and R. Danovaro. 2000. Fish-farming effects on benthic community structure in coastal sediments: analysis of meiofaunal recovery. ICES Journal of Marine Science 57(5): 1454-1461.   DOI
38 McGhie, T.K., C.M. Crawford, I.M. Mitchell and D. OBrien. 2000. The degradation of fish-cage waste in sediments during fallowing. Aquaculture 187(3-4): 351-366.   DOI
39 Navarro, J.M. and R.J. Thompson. 1997. Biodeposition by the horse mussel Modiolus modiolus (Dillwyn) during the spring diatom bloom. Journal of Experimental Marine Biology and Ecology 209(1-2): 1-13.   DOI
40 Park, J.H., Y.S. Cho, W.C. Lee, S.J. Hong, H.C. Kim and J.B Kim. 2012. Comparison of material flux at the sediment-water interface in marine finfish and abalone cage farms, southern coast of Korea: in-situ and laboratory incubation examination. Journal of the Korean Society of Marine Environment & Safety 18(6): 536-544.   DOI
41 Peters, K.E., R.E. Sweeney and I.R. Kaplan. 1978. Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter 1. Limnology and Oceanography 23(4): 598-604.   DOI
42 Phillips, D.L., R. Inger, S. Bearhop, A.L. Jackson, J.W. Moore, A.C. Parnell and E.J. Ward. 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92(10): 823-835.   DOI
43 Piedecausa, M.A., F. Aguado-Gimenez, J. Cerezo Valverde, M.D. Hernandez Llorente and B. Garcia-Garcia. 2012. Influence of fish food and faecal pellets on short-term oxygen uptake, ammonium flux and acid volatile sulphide accumulation in sediments impacted by fish farming and non-impacted sediments. Aquaculture Research 43(1): 66-74.   DOI
44 Sim, B.R., H.C. Kim, S. Kang, D.I. Lee, S. Hong, S.H. Lee and Y. Kim. 2020. Geochemical Indicators for the Recovery of Sediment Quality after the Abandonment of Oyster Crassostrea gigas Farming in South Korea. Korean Journal of Fisheries and Aquatic Sciences 53(5): 773-783.   DOI
45 Prahl, F.G., J.R. Ertel, M.A. Goni, M.A. Sparrow and B. Eversmeyer. 1994. Terrestrial organic carbon contributions to sediments on the Washington margin. Geochimica et Cosmochimica Acta 58(14): 3035-3048.   DOI
46 Rau, G.H., R.E. Sweeney and I.R. Kaplan. 1982. Plankton 13C: 12C ratio changes with latitude: differences between northern and southern oceans. Deep Sea Research Part A. Oceanographic Research Papers 29(8): 1035-1039.   DOI
47 Redfield, A.C. 1958. The biological control of chemical factors in the environment. American Scientist 46(3): 230-221.
48 Smith, B.N. and S. Epstein. 1971. Two categories of 13C/12C ratios for higher plants. Plant Physiology 47(3): 380-384.   DOI
49 Smith, J.A., D. Mazumder, I.M. Suthers and M.D. Taylor. 2013. To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods in Ecology and Evolution 4(7): 612-618.   DOI
50 Thornton, S.F. and J. McManus. 1994. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science 38(3): 219-233.   DOI
51 Tovar, A., C. Moreno, M.P. Manuel-Vez and M. Garciia-Vargas. 2000. Environmental implications of intensive marine aquaculture in earthen ponds. Marine Pollution Bulletin 40(11): 981-988.   DOI
52 Zhou, Y., H. Yang, H. Hu, Y. Liu, Y. Mao, H. Zhou and F. Zhang. 2006. Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture 252(2-4): 264-276.   DOI
53 Wai, T.C., K.M. Leung, R.S. Wu, P.K. Shin, S.G. Cheung, X.Y. Li and J.H. Lee. 2011. Stable isotopes as a useful tool for revealing the environmental fate and trophic effect of opensea-cage fish farm wastes on marine benthic organisms with different feeding guilds. Marine Pollution Bulletin 63(5-12): 77-85.   DOI
54 Yokoyama, H. and Y. Ishihi. 2003. Feeding of the bivalve Theora lubrica on benthic microalgae: isotopic evidence. Marine Ecology Progress Series 255: 303-309.   DOI
55 Yokoyama, H., K. Abo and Y. Ishihi. 2006. Quantifying aquaculture-derived organic matter in the sediment in and around a coastal fish farm using stable carbon and nitrogen isotope ratios. Aquaculture 254(1-4): 411-425.   DOI
56 Carroll, M.L., S. Cochrane, R. Fieler, R. Velvin and P. White. 2003. Organic enrichment of sediments from salmon farming in Norway: environmental factors, management practices, and monitoring techniques. Aquaculture 226(1-4): 165-180.   DOI
57 Bodineau, L., G. Thoumelin, V. Beghin and M. Wartel. 1998. Tidal time-scale changes in the composition of particulate organic matter within the estuarine turbidity maximum zone in the macrotidal Seine Estuary, France: the use of fatty acid and sterol biomarkers. Estuarine, Coastal and Shelf Science 47(1): 37-49.   DOI
58 Callier, M.D., A.M. Weise, C.W. McKindsey and G. Desrosiers. 2006. Sedimentation rates in a suspended mussel farm (Great-Entry Lagoon, Canada): biodeposit production and dispersion. Marine Ecology Progress Series 322: 129-141.   DOI
59 Callier, M.D., S. Lefebvre, M.K. Dunagan, M.P. Bataille, J. Coughlan and T.P. Crowe. 2013. Shift in benthic assemblages and organisms' diet at salmon farms: community structure and stable isotope analyses. Marine Ecology Progress Series 483: 153-167.   DOI