• 제목/요약/키워드: and fuzzy logic controller

검색결과 1,025건 처리시간 0.023초

퍼지 논리를 이용한 자동차 기후제어기 개발에 관한 연구 (A Study on the Development of Automotive Climate Controller Using Fuzzy Logic)

  • 이운근;이준웅;백광렬
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.196-206
    • /
    • 2000
  • These days, the fuzzy logic or the fuzzy set theory has received attention from a number of researchers in the area of industrial application. Moreover, the fuzzy logic control has been successfully applied to a large numbers of control problems where the conventional control methods had failed. Using this control theory we designed a climate controller for an automotive climate control system whose mathematical model is difficult. This paper describes an automotive climate control where the fuzzy control has been used to stabilize parameter uncertainties and disturbance effects. To show the validity and effectiveness of the proposed control method, the fuzzy logic controller was implemented with a philips 80C552 microcomputer chip and tested in an actual vehicle. From the experimental results, it could be conduced that the proposed controller is superior to conventional controllers in both control performance and thermal comfort. The climate control system in cars is difficult to model mathematically so we tested a fuzzy logic control system which promised better results.

  • PDF

퍼지 로직 컨트롤러를 이용한 차량 정속 주행 시스템의 구현 (Implementation of Cruise Control System using Fuzzy Logic Controller)

  • 김영민;이주필;정형환;임영도;이준탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.491-494
    • /
    • 1997
  • In this paper, we suppose a fuzzy logic controller for cruise control of vehicle. Generally, fuzzy logic controller is known as a controller which can be coped with a non-linear and a complex system. The proposed fuzzy logic controller consists of three input variables; that is, a desired speed, a current vehicle speed, and a current acceleration, and one output variable, throttle angle. The supposed fuzzy logic controller is for engine speed control system is implemented on 80586 microprocessor with DT-2801.

  • PDF

Fuzzy logic을 利用한 交通 信號 control system (Traffic signal control system using fuzzy logic)

  • 文珠永;李尙培
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.180-183
    • /
    • 1996
  • This work discusses simulation results for the fuzzy logic controller tested the project“Fuzzy Ramp Metering Algorithm Implementation.”The performance objectives were, in order of priority, to maximize total vehicle-miles, maximize mainline speeds, and minimize delay per vehicle while maintaining an acceptable ramp queue. In the fuzzy logic controller, the sensors from the on-ramps were helpful in maintaining reasonable ramp queue and mainline congestion because it considered these factors simultaneously. Each metered ramp had a parameter input file, which allowed the controller to be modified without recompiling the software. Consequently, maintenance costs should be minimal.

  • PDF

PMSM 드라이브의 고성능 속도제어를 위한 적응 퍼지제어기 (Adaptive Fuzzy Control for High Performance Speed Controller in PMSM Drive)

  • 정동화;이정철;이홍균;정택기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.79-81
    • /
    • 2002
  • This paper develops a adaptive fuzzy controller based fuzzy logic control for high performance speed controller in permanent magnet synchronous motor(PMSM) drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for PMSM drive system.

  • PDF

Absolute Stability of the Simple Fuzzy Logic Controller

  • Park, Byung-jae
    • 한국지능시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.574-578
    • /
    • 2001
  • The stability analysis for the fuzzy logic controller (FLC) has widely been reported. Furthermore many research in the FLC has been introduced to decrease the number of parameters representing the antecedent part of the fuzzy control rule. In this paper we briefly explain a single-input fuzzy logic controller (SFLC) or simple-structured FLC which uses only a single input variable. And then we analyze that it is absolutely stale based on the sector bounded condition. We also show the feasibility of the proposed stability analysis through a numerical example of a mass-damper-spring system.

  • PDF

A New Approach to Adaptive Damping Control for Statistic VAR Compensators Based on Fuzzy Logic

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.825-829
    • /
    • 2005
  • This paper presents an approach for designing a fuzzy logic-based adaptive SVC damping In controller for damping low frequency power oscillations. Power systems are often subject to low Frequency electro-mechanical oscillations resulting from electrical disturbances. Generally, power system stabilizers are designed to provide damping against this kind of oscillations. Another means to achieve damping is to design supplementary damping controllers that are equipped with SVC. Various approaches are available for designing such controllers, many of which are based on the concepts of damping torque and others which treat the damping controller design as a generic control problem and apply various control theories on it. In our proposed approach, linear optimal controllers are designed and then a fuzzy logic tuning mechanism is constructed to generate a single control signal. The controller uses the system operating condition and a fuzzy logic signal tuner to blend the control signals generated by two linear controllers, which are designed using an optimal control method. First, we design damping controllers for the two extreme conditions; the control action for intermediate conditions is determined by the fuzzy logic tuner. The more the operating condition belongs to one of the two fuzzy sets, the stronger the contribution of the control signal from that set in the output signal. Simulation studies done on a one-machine infinite-bus and a four-machine two-area test system, show that the proposed fuzzy adaptive damping SVC controller effectively enhances the damping of low frequency oscillations.

  • PDF

유전 알고리듬을 이용한 퍼지 제어기의 설계 자동화 및 매개 변수 최적화 (Optimization of Fuzzy Logic Controller Using Genetic Algorithm)

  • 장욱;손유석;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.65-67
    • /
    • 1996
  • This paper presents the automatic construction and parameter optimization technique for the fuzzy logic controller using genetic algorithm. In general the design of fuzzy controller has difficulties in the acquisition of expert's knowledge and relies to a great extent on empirical and heuristic knowledge which, in many cases, cannot be objectively justified. Therefor the performance of the controller can be degraded in the case of plant parameter variations or unpredictable incident which the designer may lave ignored. And fuzzy logic controller parameters elicited form the expert may not be global. Some of these problems can be resolved by application of genetic algorithm. Finally, we provides the second order dead time plant to evaluate the feasibility and generality of our proposed method. Comparison shows that the proposed method can produce a fuzzy logic controller with higher accuracy and a smaller number of fuzzy roles than manually billed fuzzy logic controller.

  • PDF

자기 동조 퍼지 논리 제어기를 위한 학습 알고리즘의 성능 분석 (Performance analysis of learning algorithm for a self-tuning fuzzy logic controller)

  • 정진현;이진혁
    • 한국통신학회논문지
    • /
    • 제19권11호
    • /
    • pp.2189-2198
    • /
    • 1994
  • 본 논문에서는 퍼지 제어 시스템에 사용되는 퍼지 논리 제어기의 성능을 향상시키기 위한 여러가지 알고리즘들 중에서 학습기법에 속하는 퍼지 메타 규칙에 기초한 자기 동조 기법을 사용하여 직류 서보 전동기 제어를 위한 자기 동조 퍼지 논리 제어기를 구현해서, 자기 동조 퍼지 논리 제어기의 설계와 시뮬레이션 및 실험 결과를 고찰하고, 그 결과를 일반적인 퍼지 논리 제어기의 결과와 비교하여 자기 동조 퍼지 논리 제어기의 성능을 평가한다.

  • PDF

PID auto-tuning controller design via fuzzy logic

  • He, Wei;Yu, Tian;Zhai, Yujia
    • 한국융합학회논문지
    • /
    • 제4권4호
    • /
    • pp.31-40
    • /
    • 2013
  • PID auto-tuning controller was designed via fuzzy logic. Typical values such as error and error derivative feedbackwere changed as heuristic expressions, and they determine PID gain through fuzzy logic and defuzzification process. Fuzzy procedure and PID controller design were considered separately, and they are combined and analyzed. Obtained auto-tuning PID controller by Fuzzy Logic showed the ability for less than 3rd order plant control.

Online Control of DC Motors Using Fuzzy Logic Controller for Remote Operated Robots

  • Prema, K.;Kumar, N. Senthil;Dash, Subhransu Sekhar
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.352-362
    • /
    • 2014
  • In this paper, a fuzzy logic controller is designed for a DC motor which can be used for navigation control of mobile robots. These mobile robots can be used for agricultural, defense and assorted social applications. The robots used in these fields can reduce manpower, save human life and can be operated using remote control from a distant place. The developed fuzzy logic controller is used to control navigation speed and steering angle according to the desired reference position. Differential drive is used to control the steering angle and the speed of the robot. Two DC motors are connected with the rear wheels of the robot. They are controlled by a fuzzy logic controller to offer accurate steering angle and the driving speed of the robot. Its location is monitored using GPS (Global Positioning System) on a real time basis. IR sensors in the robot detect obstacles around the robot. The designed fuzzy logic controller has been implemented in a robot, which depicts that the robot could avoid obstacle as well as perform its operation efficiently with remote online control.