• Title/Summary/Keyword: and charge-recycling

Search Result 83, Processing Time 0.021 seconds

Development of Metal-free Pump and Uni-material Packaging for Cosmetics to Improve Recycling (재활용성 향상을 위한 화장품용 메탈프리 펌프 및 유니소재 패키징 개발)

  • Sang Kyu, Ryu;Ho Sang, Kang;Jae Young, Oh
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.171-174
    • /
    • 2022
  • Cosmetic packing materials tend to be difficult to recycle when discarded due to the cosmetic industry's pursuit of aesthetics, functionality, and high value-added design. Pump packaging, which is widely used for the good preservation and discharge of cosmetics contents, is difficult to be separated and recycled because of a metal spring, which is in charge of pump resilience. In this study, a polypropylene spring was developed to replace the existing metal spring to improve the recyclability of the pump packaging for cosmetics, and was uni-materialized by applying to the cosmetic packing materials with 0.2 ml of discharge amount. In addition, performance test was conducted to verify the equivalence with the existing metal spring pumps as grounds for the commercialization of metal-free uni material pump packaging. The decompression leak test showed no leakage and displayed 14.8~17.5 N of pressing strength, 2.3~8.8 % of deviation in dispensing volume, and 4 occasions of pumping for initial discharge.

Reuse Technology Development and Economic Evaluation of Dyeing Wastewater Treatment Sludge (폐수처리슬러지의 재활용기술개발 및 경제성 평가 -B염색조합을 중심으로-)

  • 임재호;이정연
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.36-43
    • /
    • 2000
  • This study was carried out for treatment and reuse of inorganic sludge from Fenton process at B dyeing wastewater treatment plant. The parameters for pilot-scale treatment system were derived from the results of this study. It was found that $COD_{cl}$ of the treated effluent became lower than 100 mg/l approximately on the optimal reaction condition. 2nd sludge which was generated after redissolving sludge was analyzed, and it showed that reduction ratio of ash in 2nd sludge and total dry sludge weight in comparison with current sludge were 85% and 65%. Also Fe salt in sludge was redissolved about 90~95% of initial Fe by weight. It was estimated almost ₩350,000,000 for sludge reuse process. It was estimated saving of about ₩1,300,000 per day (₩420,000,000 per year) in operating cost based on 30,000 $m^3$/d treatment, which these were about ₩430,000 per day in chemical, ₩1,100,000 per day in sludge transportation and ₩200,000 per day in equipment maintenance. Payback period with interest charge for investment cost was estimated about 10.5 months. Also, net present value (NPV) was ₩792,000,000 and internal rat of return (IRR) was about 110%.

  • PDF

Development for the Waste Plastics Process (폐플라스틱의 재활용 기술)

  • 여종기
    • Resources Recycling
    • /
    • v.6 no.2
    • /
    • pp.22-28
    • /
    • 1997
  • In recent yean thc problem of wastc plastics arc greatly incrcascd with ihe result uf lndushial growth. As a rcsult the amount of wastc plaslics in domestic area is appraxhnately 2,300,000 t<~nin 1996 base and contmuously increasing more than 12% cvcry ycar. Thc disposal way of these waste plastics arc dlLl malnly rely~ng on landill1 or partially incinuralion So that it hss become a senous social problem due to the second envirnmentd pollution. The tcchnologics iar prducing oil from the waste plastics have hccn dcvelopcd far along pennd and currently some of them are in a commercialiration stage Pyrolysis process in one of the major process m heating waslc plaslics bul still has some restlichons for the cammcrc~dizatian duc lo 11s emnom~cal problems assaciated with a systcmiltlc lecd collcctionidispnsJ ways. Cansldenng cnvaomcnld problems, thc inclease m the charge for waste matcds trcatmcnt and thc lmlitarion ni disposal area, it is inteicstcd that the wastc plastics treabncnt by pyrolysn. which would be the safest and the most eilic~ent process for cnnvcrting fecd wastc to rc-usablc rcsourccs. would he predomhant m ihe near h~lurc Thc shldy aims inr the development of haslc ted~nolagy for scaling up to a com~nercial sire through pyrolys~s process which is cnnduclcd under the absence of air. Furthern~orc the waste plastics can be recycled as iual gas or oil wilhout harmful effects in enviroment, The waste w e d plastics arc pyrolyzed in (he fluidized bcd rcaclor under continuous way and thc ail ylcld gives approx~marcly 47 4%.

  • PDF

An Empirical Study on M&A (M&A에 관한 실증연구)

  • 김동환
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.62-65
    • /
    • 2001
  • 1997년과 1998년 4월 1일자의 M&A제한규정이었던 증권거래법 제200조의 철폐와 적대적 M&A의 전면허용 그리고 외국자본의 투자제한의 간소화 등 규제완화조치와, 향후 외국인에 대해서 100%까지 주식을 매입할 수 있는 적대적 M&A가 허용될 것으로 보여 우리나라에서도 M&A활동이 보다 본격화 될 것으로 전망되고 있다. 우리나라에서는 1980년대부터 M&A에 대한 관심과 연구가 시작되면서 지금까지 기업합병ㆍ인수의 동기와 효과에 대해서 많은 연구가 이루어져 왔다. 지금까지의 연구내용은 대부분 기업의 M&A동기는 시너지효과를 얻기 위함이며, 또한 공시정보가 합병공시일 전후동안에 주가수익율에 반영되어 합병 당사기업의 주주의 부에 영향을 미치는지의 주가변화 유무에 국한된 것이었다. 또한 1985년부터 1991년 초 사이에 이루어졌던 연구는 당시 국내 M&A 환경이 매우 열악하고 극히 제한된 비정상적인 자본시장 상황 하에서 이루어진 사례에 의한 연구이었기 때문에 연구결과의 문제점과 한계성이 있었고, 실효성 측면에서도 다소 미흡하였다고 할 수 있다. 우리나라 M&A의 성장발전과정을 크게 2단계로 분류한다면, 제1단계는 1975년부터 시작하여 1990년까지로써 이 기간동안의 M&A환경은 그 여건조성과 성숙준비단계였으며, 제2단계인 1990년 초부터 비로소 선진국형 시장경제원리에 근거한 보다 경쟁적이고 자율적인 M&A 시장구조가 형성되면서 활성화 단계로 진입하였다고 볼 수 있을 것이다. 본 연구의 주된 목적은 1990년부터 1996년 사이에 이루어진 상장기업의 M&A 사례를 표본으로 하여 한국에서의 기업합병과 기업인수(주식취득)가 기업가치에 미치는 영향을 구명하는데 있다. 이를 위하여 먼저, M&A 당사기업의 합병성과 발생과 차이 유무를 주가수익율을 측정하여 실증분석하고 다음으로 M&A에 따른 시너지의 잠재적 원천이 어디에 있는지 재무성과분석을 통해서 이를 실증하는데 목적이 있다.PA-designated retailers ("sellers") must accept end-of-life items returned to them by the consumers. At the local level, Taipei City implements a pay-as-you-throw program, whereby citizens pay waste collection and treatment fees through the purchase of special trash bags approved by the Taipei City Government. However. recyclables that are separated by citizens are collected free-of-charge by the City. Taichung City and Kaohsiung City, on the other hand, enforce mandatory sorting schemes, whereby citizens face penalties if they don't separate recyclables from the trash before pick-up. These programs have resulted in a significant reduction in municipal waste. Per capita waste collected per day has dropped from 1.143 kg in 1997 to 0.978 kg in 2000. Targeting a 10% recycling rate for municipal waste in 2001. EPA plans to research and develop new recycling techniques, expand the scope of producer responsibilities, and strengthen existing mu

Preparation of Electrocatalysts and Comparison of Electrode Interface Reaction for Hybrid Type Na-air Battery (Hybrid type Na-air battery를 위한 촉매들의 제조 및 전극 계면 반응 성능 비교)

  • Kim, Kyoungho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The importance of high capacity energy storage devices has recently emerged for stable power supply through renewable energy generation. From this point of view, the Na-air battery (NAB), which is a next-generation secondary battery, is receiving huge attention because it can realize a high capacity through abundant and inexpensive raw materials. In this study, activated carbon-based catalysts for hybrid type Na-air batteries were prepared and their characteristics were compared and analysed. In particular, from the viewpoint of resource recycling, activated carbon (Orange-C) was prepared using discarded orange peel, and performance was compared with Vulcan carbon, which is widely used. In addition, a Pt/C catalyst (homemade-Pt/C, HM-Pt/C) was synthesized using a modified polyol method to check whether the prepared activated carbon can be used as a supported catalyst, and a commercial Pt/C catalyst (Commercial Pt/C) and electrochemical performance were compared. The prepared Orange-C exhibited a typical H3 type BET isotherm, which is evidence that micropore and mesopore exist. In addition, in the case of HM-Pt/C, it was confirmed through TEM analysis that Pt particles were evenly distributed on the activated carbon supported catalyst. In particular, the HM-Pt/C-based NAB showed the smallest voltage gap (0.224V) and good voltage efficiency (92.34%) in the 1st galvanostatic charge-discharge test. In addition, the cycle performance test conducted for 20 cycles showed the most stable performance.

Study of Polymer Rapid Setting Cement Concrete Using Electric Arc Furnace Oxidizing Slag Aggregate (전기로(電氣爐) 산화(酸化)슬래그 잔골재를 이용한 폴리머 속경성(速硬性) 시멘트 콘크리트 기초물성(基礎物性) 연구(硏究))

  • Jung, Won-Kyong;Gill, Yong-Soo;Kang, Seung-Hee
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.30-40
    • /
    • 2012
  • Electric arc furnace slag is made in ironworks during steel refining, it is been increasing chemical and physical resistibility using ageing method of unstable state of melting steel slag for using concrete's fine aggregates. Which is been changing stable molecular structure of aggregates, it restrains moving of ion and molecule. In Korea, KS F 4571 has been prepared for using the electric arc furnace oxidizing slag to concrete aggregates(EFS). In this study, Electric arc furnace oxidizing slag is used in the PRCC(Polymer Rapid setting Cement Concrete) which is applied a bridge pavement of rehabilitation, largely. The results showed that the increment of compressive strength development by 10- 20%. The flexural strength of EFS-Con increased greatly as the electric arc furnace oxidizing slag changed. The compressive strength and flexural strength developed enough for opening the overlayed EFS-Con to the traffic after 4 hours of EFS-Con placement. The permeability of EFS-Con was evaluated as negligible due to its very low charge passed. Thus, EFS-Con could be used at repairing or overlaying the concrete at fast-track job sites.

Electrochemical Properties and Adsorption Performance of Carbon Materials Derived from Coffee Grounds (커피찌꺼기로부터 얻어진 탄소 소재의 전기화학적 성질 및 흡착 성능)

  • Jin Ju Yoo;Nayeon Ko;Su Hyun Oh;Jeongyeon Oh;Mijung Kim;Jaeeun Lee;Taeshik Earmme;Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.529-533
    • /
    • 2023
  • The fundamental electrochemical properties and adsorption capabilities of the carbonized product derived from coffee grounds, a prevalent form of lignocellulose abundantly generated in our daily lives, have been extensively investigated. The structure and morphology of the resultant carbonized product, obtained through a carbonization process conducted at a relatively low temperature of 600 ℃, were meticulously examined using a scanning electron microscope. Raman spectroscopy measurements yielded a relative crystallinity (D/G ratio) of the carbon product of 0.64. Electrical measurements revealed a linear ohmic relationship within the carbonized product. Furthermore, the viability of utilizing this carbonized material as an anode in lithium-ion batteries was evaluated through half-cell charge/discharge experiments, demonstrating an initial specific capacity of 520 mAh/g. Additionally, the adsorption performance of the carbon material towards a representative dye molecule was assessed via UV spectroscopy analyses. Supplementary experiments corroborated the material's ability to adsorb a distinct model molecule characterized by differing surface polarity, achieved through surface modification. This article presents pivotal findings that hold substantial implications for forthcoming research endeavors centered around the recycling of lignocellulose waste.

Resource Cyclical Dynamics Focused on the Waste of Electric and Electronic Equipment

  • Lee, Man-Hyung;Kim, Tae-Yong;Kim, Dong-Chan;Hong, Sung-Ho
    • Korean System Dynamics Review
    • /
    • v.9 no.2
    • /
    • pp.129-154
    • /
    • 2008
  • As a practical means to upgrade urban sustainability, this paper focuses on resource cyclical systems concerned with the waste of electric and electronic equipment (WEEE) in Korea. Borrowing System Dynamics concepts and approaches, it examines behavioral changes of WEEE dynamics to observe whether the existing management methods can be readjusted. The measurement is based upon both reuse and material and thermal recycle simulation works in the individual stage of WEEE discharge, collection, and treatment, going beyond the traditional recycle-only customs. This research estimates that the newly introduced Extended Producer Responsibility (EPR) system would definitely exert a significant impact on the final stage of WEEE treatment, decreasing the final treatment volume in the first half of the research period. The trend, nonetheless, would be reversed in the second half, mainly owing to the additional waste volume originated from the local government and recycling center. Sensitivity analysis poses, among others, that the local government-supported reuse center should take charge of a pivotal role in the long run. The research also shows that sufficientand necessary conditions for the WEEE management and treatment should be given to the combined efforts, both from the private sectors and the public domains. Based on these research findings, the paper recommends that key stakeholders including the producer and the public organizations should devise how to jointly carry out specific agenda centered around partnership or network buildings.

  • PDF

Efficient Management System for Mercury-containing Waste according to the Current Status of Spent Fluorescent Lamps (폐형광등 현황에 따른 수은함유폐기물의 효율적 관리 방안)

  • RHEE, Seung-Whee;Park, Hun-Su;Yoo, Ho-Sik
    • Journal of Environmental Policy
    • /
    • v.14 no.1
    • /
    • pp.135-158
    • /
    • 2015
  • An efficient management system of mercury-containing waste was designed by reviewing the management and treatment of spent fluorescent lamp in Korea and foreign countries. According to Waste Management Act in Korea, mercury-containing wastes from households are classified as municipal solid wastes even though mercury-containing wastes pose hazardous risks. In general, hence, mercury-containing wastes from households are not being managed properly because those wastes from households were not classified as specific wastes (or hazardous wastes). Some mercury-containing wastes are managed as a mandatory target item in waste charge system and Extended Producer Responsibility (EPR) system under Act on Promotion for Saving and Recycling of Resources. An efficient management plan of mercury-containing wastes can be derived with an improved collection system, designating disposal sites and advanced treatment facilities for spent fluorescent lamps. Finally, the role of each agent involved from collection to disposal of mercury-containing wastes was suggested to establish the efficient management system for mercury-containing waste.

  • PDF

Electric vehicle battery remaining capacity analysis method using cell-to-cell voltage deviation (셀간 전압 편차를 활용한 전기자동차 배터리 잔존용량 분석 기법)

  • Gab-Seong Cho;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.54-65
    • /
    • 2023
  • Due to the nature of electric vehicles, the batteries used for electric vehicles have a very large rated capacity. If an electric vehicle runs for a long time or an electric vehicle is abandoned due to a traffic accident, the electric vehicle battery becomes a waste battery. Even in vehicles that are being abandoned, the remaining capacity of waste batteries for electric vehicles is sufficient for other purposes. Waste batteries for automobiles are very expensive, so they need to be recycled and reused, but there was a problem that the standards for measuring the performance grade of waste batteries for recycling and reuse were insufficient. As a method for measuring the remaining capacity of waste battery, the most stable and reliable method is to measure the remaining capacity of battery using full charge and discharge. However, the inspection method by the full charging and discharging method varies depending on the capacity of the battery, but it takes more than a day to inspect, and many people are making great efforts to solve this problem. In this paper, an electric vehicle battery residual capacity analysis technique using voltage deviation between cells was studied and analyzed as a method to reduce inspection time for electric vehicle batteries. To this end, a full charging and discharging-based capacity measurement system was constructed, experimental data were collected using a nose or waste battery, and the correlation between the voltage deviation and the remaining capacity of the battery pack was analyzed to verify whether it can be used for battery inspection.

  • PDF