• Title/Summary/Keyword: and Three-point method

Search Result 2,136, Processing Time 0.038 seconds

Vibration Analysis of Three-Dimensional Piping System by Transfer Matrix Method (전달행렬법을 이용한 3차원 파이프 계의 진동해석)

  • 이동명
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.110-116
    • /
    • 1998
  • For the vibration analysis of 3-dimensional piping system containing fluid flow, a transfer matrix method is presented. The fluid velocity and pressure were considered, that coupled to longitudinal and flexural vibrations. Transfer matrices and point matrices were derived from direct solutions of the differential equations of motion of pipe conveying fluids, and the variations of natural frequency with flow velocity for 3-dimensional piping system were investigated.

  • PDF

Species Diversity of a Stratified Hornbeam Community in Kwangneung Forest (광릉산림에 있어서 서나무군집의 층에 따른 종다양성에 관한 연구)

  • 이광석;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.2
    • /
    • pp.131-136
    • /
    • 1995
  • The herb, shrub, understory and canopy strata, which arbitrarily delineated by size classes, were sampled separately. The former one were sampled by the pin-point quadrat method. And remaining three by size quadrats, diversity (H= =$\Sigma$ Pi log Pi) of of each stratum was estimated for each set of census data. Species diversity within a stratum was independent of sample plot size above a minimum cumulative area. Diversity based on plotless and plot samples could he determined by the same equation, and by pooling the data needed to estimate diversity of each stratum.

  • PDF

Synchronous Carrier-based Pulse Width Modulation Switching Method for Vienna Rectifier

  • Park, Jin-Hyuk;Yang, SongHee;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.604-614
    • /
    • 2018
  • This paper proposes a synchronous switching technique for a Vienna rectifier that uses carrier-based pulse width modulation (CB-PWM). A three-phase Vienna rectifier, similar to a three-level T-type converter with three back-to-back switches, is used as a PWM rectifier. Conventional CB-PWM requires six independent gate signals to operate back-to-back switches. When internal switches are operated synchronously, only three independent gate signals are required, which simplifies the construction of gate driver circuits. However, with this method, total harmonic distortion of the input current is higher than that with conventional CB-PWM switching. A reactive current injection technique is proposed to improve current distortion. The performance of the proposed synchronous switching method and the effectiveness of the reactive current injection technique are verified using simulations and experiments performed with a set of Vienna rectifiers rated at 5 kW.

Design of Three-dimensional Face Recognition System Using Optimized PRBFNNs and PCA : Comparative Analysis of Evolutionary Algorithms (최적화된 PRBFNNs 패턴분류기와 PCA알고리즘을 이용한 3차원 얼굴인식 알고리즘 설계 : 진화 알고리즘의 비교 해석)

  • Oh, Sung-Kwun;Oh, Seung-Hun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.539-544
    • /
    • 2013
  • In this paper, we was designed three-dimensional face recognition algorithm using polynomial based RBFNNs and proposed method to calculate the recognition performance. In case of two-dimensional face recognition, the recognition performance is reduced by the external environment like facial pose and lighting. In order to compensate for these shortcomings, we perform face recognition by obtaining three-dimensional images. obtain face image using three-dimension scanner before the face recognition and obtain the front facial form using pose-compensation. And the depth value of the face is extracting using Point Signature method. The extracted data as high-dimensional data may cause problems in accompany the training and recognition. so use dimension reduction data using PCA algorithm. accompany parameter optimization using optimization algorithm for effective training. Each recognition performance confirm using PSO, DE, GA algorithm.

THREE-DIMENSIONAL VERIFICATION OF INTRACRANIAL TARGET POINT DEVIATION USING MRI-BASED POLYMER-GEL DOSIMETRY FOR CONVENTIONAL AND FRACTIONATED STEREOTACTIC RADIOSURGERY

  • Lee, Kyung-Nam;Lee, Dong-Joon;Suh, Tae-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.107-118
    • /
    • 2011
  • Conventional (SRS) and fractionated (FSRS) stereotactic radiosurgery necessarily require stringent overall target point accuracy and precision. We determine three-dimensional intracranial target point deviations (TPDs) in a whole treatment procedure using magnetic resonance image (MRI)-based polymer-gel dosimetry, and suggest a technique for overall system tests. TPDs were measured using a custom-made head phantom and gel dosimetry. We calculated TPDs using a treatment planning system. Then, we compared TPDs using mid bi-plane and three-dimensional volume methods with spherical and elliptical targets to determine their inherent analysis errors; finally, we analyzed regional TPDs using the latter method. Average and maximum additive errors for ellipses were 0.62 and 0.69 mm, respectively. Total displacements were 0.92 ${\pm}$ 0.25 and 0.77 ${\pm}$ 0.15 mm for virtual SRS and FSRS, respectively. Average TPDtotal at peripheral regions was greater than that at central regions for both. Overall system accuracy was similar to that reported previously. Our technique could be used as an overall system accuracy test that considers the real radiation field shape.

Windowed Quaternion Estimator For Gyroless Spacecraft Attitude Determination

  • Kim, Injung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.167.5-167
    • /
    • 2001
  • Single point attitude determination method provides an optimal attitude minimizing the Wahba loss function. However, for the insufficient number of measurement vectors, the conventional single point methods has no unique solution. Thus, we introduce the sequential method to and an optimal attitude minimizing the windowed loss function. In this paper, this function is de ned as the sum of square errors for all measurement vectors within the axed sliding window. For simple implementation, the proposed algorithm is rewritten as a recursive form. Moreover, the covariance matrix is derived and expressed as a recursive form. Finally, we apply this algorithm to the attitude determination system with three LOS measurement sensors.

  • PDF

Development of High-Performance FEM Modeling System Based on Fuzzy Knowledge Processing

  • Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.193-198
    • /
    • 2004
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of tree-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Voronoi diagram method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

Study on Parallelized Rounding Algorithm in Floating-point Addition and Multiplication (부동소수점 덧셈과 곱셈에서의 라운딩 병렬화 알고리즘 연구)

  • 이원희;강준우
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1017-1020
    • /
    • 1998
  • We propose an algorithm which processes the floating-point $n_{addition}$traction and rounding in parallel. It also processes multiplication and rounding in the same way. The hardware model is presented that minimizes the delay time to get results for all the rounding modes defined in the IEEE Standards. An unified method to get the three bits(L, G, S)for the rounding is described. We also propose an unified guide line to determine the 1-bit shift for the post-normalization in the Floating-point $n_{addition}$traction and multiplication.

  • PDF

Novel Model Predictive Control Method to Eliminate Common-mode Voltage for Three-level T-type Inverters Considering Dead-time Effects

  • Wang, Xiaodong;Zou, Jianxiao;Dong, Zhenhua;Xie, Chuan;Li, Kai;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1458-1469
    • /
    • 2018
  • This paper proposes a novel common-mode voltage (CMV) elimination (CMV-EL) method based on model predictive control (MPC) to eliminate CMV for three-level T-type inverters (3LT2Is). In the proposed MPC method, only six medium and one zero voltage vectors (VVs) (6MV1Z) that generate zero CMV are considered as candidates to perform the MPC. Moreover, the influence of dead-time effects on the CMV of the MPC-based 6MV1Z method is investigated, and the candidate VVs are redesigned by pre-excluding the VVs that will cause CMV fluctuations during the dead time from 6MV1Z. Only three or five VVs are included to perform optimization in every control period, which can significantly reduce the computational complexity. Thus, a small control period can be implemented in the practical applications to achieve improved grid current performance. With the proposed CMV-EL method, the CMV of the $3LT^2Is$ can be effectively eliminated. In addition, the proposed CMV-EL method can balance the neutral point potentials (NPPs) and yield satisfactory performance for grid current tracking in steady and dynamic states. Simulation and experimental results are presented to verify the effectiveness of the proposed method.

APPROXIMATING COMMON FIXED POINT OF THREE MULTIVALUED MAPPINGS SATISFYING CONDITION (E) IN HYPERBOLIC SPACES

  • Austine Efut Ofem;Godwin Chidi Ugwunnadi;Ojen Kumar Narain;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.623-646
    • /
    • 2023
  • In this article, we introduce the hyperbolic space version of a faster iterative algorithm. The proposed iterative algorithm is used to approximate the common fixed point of three multi-valued almost contraction mappings and three multi-valued mappings satisfying condition (E) in hyperbolic spaces. The concepts weak w2-stability involving three multi-valued almost contraction mappings are considered. Several strong and △-convergence theorems of the suggested algorithm are proved in hyperbolic spaces. We provide an example to compare the performance of the proposed method with some well-known methods in the literature.