• Title/Summary/Keyword: and Route Optimization

Search Result 254, Processing Time 0.033 seconds

Route Optimization for Energy-Efficient Path Planning in Smart Factory Autonomous Mobile Robot (스마트 팩토리 모빌리티 에너지 효율을 위한 경로 최적화에 관한 연구)

  • Dong Hui Eom;Dong Wook Cho;Seong Ju Kim;Sang Hyeon Park;Sung Ho Hwang
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.46-52
    • /
    • 2024
  • The advancement of autonomous driving technology has heightened the importance of Autonomous Mobile Robotics (AMR) within smart factories. Notably, in tasks involving the transportation of heavy objects, the consideration of weight in route optimization and path planning has become crucial. There is ongoing research on local path planning, such as Dijkstra, A*, and RRT*, focusing on minimizing travel time and distance within smart factory warehouses. Additionally, there are ongoing simultaneous studies on route optimization, including TSP algorithms for various path explorations and on minimizing energy consumption in mobile robotics operations. However, previous studies have often overlooked the weight of the objects being transported, emphasizing only minimal travel time or distance. Therefore, this research proposes route planning that accounts for the maximum payload capacity of mobile robotics and offers load-optimized path planning for multi-destination transportation. Considering the load, a genetic algorithm with the objectives of minimizing both travel time and distance, as well as energy consumption is employed. This approach is expected to enhance the efficiency of mobility within smart factories.

Comparative Study on Determining Highway Routes (도로의 최적노선대 선정방법 비교 연구)

  • Kim, Kwan-Jung;Chang, Myung-Soon
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.159-179
    • /
    • 2006
  • By using the current road design method that is based on the regulation about structure and facilities standard of the road and the route plan guide of a national road and the alignment optimization road design method which is studied in the inside and outside of country, this study operate the route plan of the sample study and compare and analysis the route character, consequently the current design method has local optimization that is formed the plan by the stage and the section. Alignment optimization road design has the system optimal route search. But cost function has limite that caused by construction parameter that is not included in cost function. So we design a road route included cost function in main fields. As a result, we obtain a realistic and economically road route. The alignment optimization road design model has to be made up some problems, like the change of vertical gradient in the tunnel section, though this defects it has a lot of merits as a geometric design tool, especially in the feasibility study and the scheme design.

  • PDF

A Study on Performance Improvement of Route Optimization in Fast Mobile IPv6 (Fast Mobile IPv6에서 Route Optimization 성능 향상에 관한 연구)

  • Oh, Moon-Kyoon;Kim, Dae-Young;Ryu, Jung-Kwan;Ro, Soong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4B
    • /
    • pp.559-565
    • /
    • 2010
  • In Mobile IPv6 handover should be followed by RO(Route Optimization) to support direct communication between a MN(Mobile Node) and CN(Correspondent Node). For this RR MIPv6 must perform RR(Return Routability) procedure before BU(Binding Update) to CN. The Fast Handover for MIPv6(FMIPv6) also performs the RR test for MN to communicate with CN directly. However, Return Routability test has long latency resulting in handover delay in MIPv6. This paper proposes the method to reduce the handover deay by reducing RO latency in FastMobile IPv6.

Optimization Method for Ship Route Planning in Coastal Sea (연안 내 항로 계획을 위한 최적화 방법)

  • Lee, Won-Hui;Yu, Won-Cheol;Ham, Seung-Ho;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.341-342
    • /
    • 2018
  • Unlike previous studies on the optimum route of the ship operating on th ocean, this study proposed an optimization method for the route planning of the ship operating on the coast. In general, passenger ships on the coast navigate along the waypoints indicated in the authorized route. Therefore this study propose objective function considering the braking power and time to determine the speed between waypoints, and the optimum speed was determined by applying the proposed method to the actual route of the passenger ship between Mokpo and Jeju.

  • PDF

Optimal Route Planning for Maritime Autonomous Surface Ships Using a Nonlinear Model Predictive Control

  • Daejeong Kim;Zhang Ming;Jeongbin Yim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.2
    • /
    • pp.66-74
    • /
    • 2023
  • With the increase of interest in developing Maritime Autonomous Surface Ships (MASS), an optimal ship route planning is gradually gaining popularity as one of the important subsystems for autonomy of modern marine vessels. In the present paper, an optimal ship route planning model for MASS is proposed using a nonlinear MPC approach together with a nonlinear MMG model. Results drawn from this study demonstrated that the optimization problem for the ship route was successfully solved with satisfaction of the nonlinear dynamics of the ship and all constraints for the state and manipulated variables using the nonlinear MPC approach. Given that a route generation system capable of accounting for nonlinear dynamics of the ship and equality/inequality constraints is essential for achieving fully autonomous navigation at sea, it is expected that this paper will contribute to the field of autonomous vehicles by demonstrating the performance of the proposed optimal ship route planning model.

Determination of Optimal Ship Route in Coastal Sea Considering Sea State and Under Keel Clearance (해상 상태 및 선저여유수심을 고려한 연안 내 선박의 최적 항로 결정)

  • Lee, Wonhee;Yoo, Wonchul;Choi, Gwang-Hyeok;Ham, Seung-Ho;Kim, Tae-wan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.480-487
    • /
    • 2019
  • Ship route planning is to find a route to minimize voyage time and/or fuel consumption in a given sea state. Unlike previous studies, this study proposes an optimization method for the route planning to avoid the grounding risk near the coast. The route waypoints were searched using A* algorithm, and the route simplification was performed to remove redundant waypoints using Douglas-Peucker algorithm. The optimization was performed to minimize fuel consumption by setting the optimization design parameters to the engine rpm. The sea state factors such as wind, wave, and current are also considered for route planning. We propose the constraint to avoid ground risk by using under keel clearance obtained from electoronic navigational chart. The proposed method was applied to find the optimal route between Mokpo and Jeju. The result showed that the proposed method suggests the optimal route that minimizes fuel consumption.

Regional Information-based Route Optimization Scheme in Nested Mobile Network (중첩된 이동 네트워크 환경에서 지역적 정보를 이용한 경로 최적화 방안)

  • Kim Joon woo;Park Hee dong;Lee Kang won;Choi Young soo;Cho You ze;Cho Bong kwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4B
    • /
    • pp.178-185
    • /
    • 2005
  • NEMO basic support is a solution that provides network mobility in the Internet topology. Yet, when multiple mobile networks are nested, this basic solution suffers ken pinball-routing and a severe routing overhead. Therefore, several solutions for route optimization in a nested mobile network have already been suggested by the IETF NEMO WG. However, the current paper proposes Regional Information-based Route Optimization (RIRO) in which mobile routers maintain a Nested Router List (NRL) to obtain next-hop information, and packets are transmitted with a new routing header called an RIRO Routing Header (RIRO-RH). We showed that RIRO had the minimum packet overhead that remained constant, irrespective of how deep the mobile network was nested, in comparison with two earlier proposed schemes - Reverse Routing Header (RRH) and Bi-directional tunnel between HA and Top-Level mobile router (BHT).

Optimal Ship Route Planning in Coastal Sea Considering Safety and Efficiency (안전과 효율을 고려한 연안 내 선박의 최적 항로 계획)

  • Lee, Won-Hee;Choi, Gwang-Hyeok;Ham, Seung-Ho;Kim, Tae-wan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.38-39
    • /
    • 2019
  • Optimal route planning is the route planning to minimize voyage time or fuel consumption in a given ocean environment. Unlike the previous studies on weather routing, this study proposes an optimization method for the route planning to avoid the grounding risk in the coast. The route way-points were searched using Dijkstra algorithm, and then the optimization was performed to minimize fuel consumption by setting the optimization design parameter to the engine rpm. To set the engine rpm, a method to use the fixed rpm from the departure point to the destination point, and a method to use the rpm for each section by dividing the route were used. The ocean environmental factors considered for route planning were wind, wave, and current, and the depth information was utilized to compute grounding risk. The proposed method was applied to the ship passing between Mokpo and Jeju, and then it was confirmed that fuel consumption was reduced by comparing the optimum route and the past navigated route.

  • PDF

A Study of method to apply MANET Protocol for Route Optimization in Nested Mobile Network (Nested Mobile Network상의 Route Optimization을 위한 MANET Protocol 적용 방안 연구)

  • Choi, Seung-Won;Kim, Sang-Bok;Kim, Young-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.269-272
    • /
    • 2005
  • 무선 네트워크 이동성 기술에 대한 연구가 수년간 진행되어 오면서 Mobile Network에 PAN(Personal Area Network)과 유사한 형태의 Nested Mobile Network에 대한 관심이 높아지고 있으며, 이러한 Nested Mobile Network에서의 경로최적화(Route Optimization : RO) 기술에 대한 연구가 활발하게 진행되고 있다. NEMO(NEtwork MObility)의 RO를 위해 제안된 논문 중에 ORC(Optimized Route Cache Protocol)에 대한 제안이 있었다.[1] NEMO Basic Support가 표준안으로 채택되면서 연구 대상에서 거론되지 않고 있지만, 복잡한 이동성 기술인 Nested Mobile Network상의 RO를 위해 다시 검토해 볼 수 있을 것이다. 또한 동일 저자에 의해 제안된 Nested Mobile Network 내부에 Ad-hoc Routing 알고리즘인 OLSR(Optimized Link State Routing Protocol)을 적용한 제안이 발표되었다.[2] 본 논문에서는 ORC와 Nested Mobile Network상의 OLSR Scheme을 적용하여 RO를 위한 방안을 제안하고자 한다.

  • PDF

Multi-objective optimization of submerged floating tunnel route considering structural safety and total travel time

  • Eun Hak Lee;Gyu-Jin Kim
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.323-334
    • /
    • 2023
  • The submerged floating tunnel (SFT) infrastructure has been regarded as an emerging technology that efficiently and safely connects land and islands. The SFT route problem is an essential part of the SFT planning and design phase, with significant impacts on the surrounding environment. This study aims to develop an optimization model considering transportation and structure factors. The SFT routing problem was optimized based on two objective functions, i.e., minimizing total travel time and cumulative strains, using NSGA-II. The proposed model was applied to the section from Mokpo to Jeju Island using road network and wave observation data. As a result of the proposed model, a Pareto optimum curve was obtained, showing a negative correlation between the total travel time and cumulative strain. Based on the inflection points on the Pareto optimum curve, four optimal SFT routes were selected and compared to identify the pros and cons. The travel time savings of the four selected alternatives were estimated to range from 9.9% to 10.5% compared to the non-implemented scenario. In terms of demand, there was a substantial shift in the number of travel and freight trips from airways to railways and roadways. Cumulative strain, calculated based on SFT distance, support structure, and wave energy, was found to be low when the route passed through small islands. The proposed model helps decision-making in the planning and design phases of SFT projects, ultimately contributing to the progress of a safe, efficient, and sustainable SFT infrastructure.