• Title/Summary/Keyword: and Infrared (IR) detector

Search Result 85, Processing Time 0.025 seconds

The fabrication of bolometric IR detector for glucose concentration detection (글루코오스 농도 측정을 위한 볼로미터 타입의 적외선 센서 제작)

  • Choi, Ju-Chan;Jung, Ho;Park, Kun-Sik;Park, Jong-Moon;Koo, Jin-Gun;Kang, Jin-Yeong;Kong, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.250-255
    • /
    • 2008
  • A vanadium pentoxide ($V_2O_5$)-based bolometric infrared (IR) sensor has been designed and fabricated using micro electro mechanical systems (MEMS) technology for glucose detection and its resistive characteristics has been illustrated. The proposed bolometric infrared sensor is composed of the vanadium pentoxide array that shows superior temperature coefficient of resistance (TCR) and standard silicon micromachining compatibility. In order to achieve the best performance, deposited $V_2O_5$ thin film is optimized by adequate rapid thermal annealing (RTA) process. Annealed vanadium oxide thin film has demonstrated a linear characteristic and relatively high TCR value (${-4}%/^{\circ}C$). The resistance of vanadium oxide is changed by IR intensity based on glucose concentration.

A Fabrication of IR $CO_2$ Sensor based on the MEMS and Characteristic Evaluation (MEMS 기반의 IR $CO_2$ 센서 제작 및 특성 평가)

  • Kim Shin-Keun;Han Yong-Hee;Moon Sung-Wook
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.232-237
    • /
    • 2005
  • In this paper, we fabricated $CO_2$ gas sensor based on the MEMS infrared sensor and characterized its electrical and $CO_2$-sensing properties. The fabricated $CO_2$ gas sensor by MEMS technique has many advanges over NDIR(nondispersive) $CO_2$ sensor such as monolithic fabrication, very high selectivity on $CO_2$, low power consumption and compact system. Microbolometer by surface micromachining was fabricated for gas detector and $CO_2$ filter chip by bulk micromachining was fabricated for signal referencing. By using the proposed and fabricated gas sensor, we are expected to measure $CO_2$ concentration more accurately with high reliability.

Realization of Readout Circuit Through Integrator to Average MCT Photodetector Signals of Noncontact Chemical Agent Detector (비접촉 화학작용제 검출기의 MCT 광검출기를 위한 적분기 기반의 리드아웃 회로 구현)

  • Park, Jae-Hyoun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.115-119
    • /
    • 2022
  • A readout circuit for a mercury-cadmium-telluride (MCT)-amplified mid-wave infrared (IR) photodetector was realized and applied to noncontact chemical agent detectors based on a quantum cascade laser (QCL). The QCL emitted 250 times for each wavelength in 0.2-㎛ steps from 8 to 12 ㎛ with a frequency of 100 kHz and duty ratio of 10%. Because of the nonconstant QCL emission power during on-duty, averaging the photodetector signals is essential. Averaging can be performed in digital back-end processing through a high-speed analog-to-digital converter (ADC) or in analog front-end processing through an integrator circuit. In addition, it should be considered that the 250 IR data points should be completely transferred to a PC during each wavelength tuning period of the QCL. To average and minimize the IR data, we designed a readout circuit using the analog front-end processing method. The proposed readout circuit consisted of a switched-capacitor integrator, voltage level shifter, relatively low-speed analog-to-digital converter, and micro-control unit. We confirmed that the MCT photodetector signal according to the QCL source can be accurately read and transferred to the PC without omissions.

A new fabrication process of vanadium oxides($VO_{x}$) thin films showing high TCR and low resistance for uncooled IR detectors

  • Han, Yong-Hee;Kang, Ho-Kwan;Moon, Sung-Uk;Oh, Myung-Hwan;Park, In-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.558-561
    • /
    • 2001
  • Vanadium oxide ($VO_{x}$) thin films are very good candidate material for uncooked infrared (IR) detectors due to their high temperature coefficient of resistance (TCR) at room temperature. But, the deposition of $VO_{x}$ thin films showing good electrical properties is very difficult in micro bolometer fabrication process using sacrificial layer removal because of its low process temperature and thickness of thin films less than 1000${\AA}$. This paper presents a new fabrication process of $VO_{x}$ thin films having high TCR and low resistance. Through sandwich structure of $VO_{x}$(100${\AA}$)/V(80${\AA}$)/$VO_{x}$(500${\AA}$) by sputter method and post-annealing at oxygen ambient, we have achieved high TCR more than -2%/$^{\circ}C$ and low resistance less than $10K\Omega$ at room temperature.

  • PDF

Design of readout circuit for linear two-color infrared detector array (선형 종ㆍ원적외선 이중대역 동시 검출기배열을 위한 신호취득회로의 설계)

  • 김철범;우두형;강상구;이희철
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.49-56
    • /
    • 2004
  • A new readout circuit(ROIC) for linear HgCdTe 64${\times}$2 two-color Infrared (IR) detector is described. This circuit is based on the buffered direct injection(BDI) technology with high injection efficiency. By using saturation current isolation circuit, the proposed ROIC removed the problems that LWIR(Long Wavelength InfraRed) signal distort when MWIR(Middle Wavelength InfraRed) signal saturates so that new ROIC has larger measurable temperature range about 120k than that of previous circuit and it is also tolerant for dead pixel in MWIR detector. The designed circuit was fabricated using 0.6um 2-poly 3-metal CMOS process. We measured that the designed circuit outputs MWIR signal and LWIR signal simultaneously and saturation current isolationcircuit also operates well. Next, measured noise was about 53uV at room temperature and it can be assumed that designed circuit can satisfy nearly 95% BLIP condition at 77K.

A new fabrication process of vanadium oxides($VO_{x}$) thin films showing high TCR and low resistance for uncooled IR detectors

  • Han, Yong-Hee;Kang, Ho-Kwan;Moon, Sung-Uk;Oh, Myung-Hwan;Choi, In-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.558-561
    • /
    • 2001
  • Vanadium oxide ($VO_x$) thin films are very good candidate material for uncooled infrared (IR) detectors due to their high temperature coefficient of resistance (TCR) at room temperature. But, the deposition of $VO_x$ thin films showing good electrical properties is very difficult in micro bolometer fabrication process using sacrificial layer removal because of its low process temperature and thickness of thin films less than $1000{\AA}$. This paper presents a new fabrication process of $VO_x$ thin films having high TCR and low resistance. Through sandwich structure of $VO_{x}(100{\AA})/V(80{\AA})/VO_{x}(500{\AA})$ by sputter method and post-annealing at oxygen ambient, we have achieved high TCR more than $-2%/^{\circ}C$ and low resistance less than $10K\Omega$ at room temperature.

  • PDF

A Study on the Alignment of Aiming Sight Unit for Infrared Homing Missile (적외선 호밍 유도탄의 조준축 정렬에 관한 연구)

  • Jung Young-Sook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.30-37
    • /
    • 2004
  • For a proper operation of portable air defense IR terminal homing missile to the rapid intruding target, the boresight of an IR seeker of the missile should be accurately aligned with the gunner's aiming sight. Before a gunner fires the missile, he tries to keep the target within the circle of ASU ensuring the seeker to lock on the target correctly. In this paper, using an electrical seeker caging loop and IR detector signal characteristics, a precise aligning method between the seeker boresight and the LOS(Line of Sight) of ASU(Aiming Sight Unit) was studied. Although every seeker has slightly different SLA (Signal of Look Angle) output, we can get negligible alignment error through a fine tuning method of electrical caging signal. This alignment procedure was also adopted in K-PSAM system.

Fourier Transform Infrared Matrix Isolation Study of Acetonitrile in Solid Argon

  • Hack Sung Kim;Kwan Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.520-526
    • /
    • 1992
  • The intramolecular fundamental vibrations of $CH_3CN$ trapped in solid argon matrix have been reinvestigated by means of FT-IR spectroscopy in the spectral range of 4000-500 $cm^{-1}$. By employing a quantum detector, infrared spectra could be obtained at matrix to solute ratio of 10000, allowing the clarification of the peaks due to monomeric species more clearly. Temperature controlled diffusion was initiated to identify the dimeric and polymeric species in terms of difference spectra. The assignments of monomeric and dimeric species are found, in general, to agree with the earlier work performed at higher concentration (Ar/$CH_3CN$ = 1500) using a dispersive spectrometer. Nonetheless the difficulty of minute differences between the earlier infrared and Raman spectroscopic results could be resolved. Moreover, the previously unnotified peaks due to polymeric species have been identified.

Research on Local and Global Infrared Image Pre-Processing Methods for Deep Learning Based Guided Weapon Target Detection

  • Jae-Yong Baek;Dae-Hyeon Park;Hyuk-Jin Shin;Yong-Sang Yoo;Deok-Woong Kim;Du-Hwan Hur;SeungHwan Bae;Jun-Ho Cheon;Seung-Hwan Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.41-51
    • /
    • 2024
  • In this paper, we explore the enhancement of target detection accuracy in the guided weapon using deep learning object detection on infrared (IR) images. Due to the characteristics of IR images being influenced by factors such as time and temperature, it's crucial to ensure a consistent representation of object features in various environments when training the model. A simple way to address this is by emphasizing the features of target objects and reducing noise within the infrared images through appropriate pre-processing techniques. However, in previous studies, there has not been sufficient discussion on pre-processing methods in learning deep learning models based on infrared images. In this paper, we aim to investigate the impact of image pre-processing techniques on infrared image-based training for object detection. To achieve this, we analyze the pre-processing results on infrared images that utilized global or local information from the video and the image. In addition, in order to confirm the impact of images converted by each pre-processing technique on object detector training, we learn the YOLOX target detector for images processed by various pre-processing methods and analyze them. In particular, the results of the experiments using the CLAHE (Contrast Limited Adaptive Histogram Equalization) shows the highest detection accuracy with a mean average precision (mAP) of 81.9%.

Athermalization and Narcissus Analysis of Mid-IR Dual-FOV IR Optics (이중 시야 중적외선 광학계 비열화·나르시서스 분석)

  • Jeong, Do Hwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.110-118
    • /
    • 2018
  • We have designed a mid-infrared optical system for an airborne electro-optical targeting system. The mid-IR optical system is a dual-field-of-view (FOV) optics for an airborne electro-optical targeting system. The optics consists of a beam-reducer, a zoom lens group, a relay lens group, a cold stop conjugation optics, and an IR detector. The IR detector is an f/5.3 cooled detector with a resolution of $1280{\times}1024$ square pixels, with a pixel size of $15{\times}15{\mu}m$. The optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ and $5.40^{\circ}{\times}4.23^{\circ}$) by the insertion of two lenses into the zoom lens group. The IR optical system was designed in such a way that the working f-number (f/5.3) of the cold stop internally provided by the IR detector is maintained over the entire FOV when changing the zoom. We performed two analyses to investigate thermal effects on the image quality: athermalization analysis and Narcissus analysis. Athermalization analysis investigated the image focus shift and residual high-order wavefront aberrations as the working temperature changes from $-55^{\circ}C$ to $50^{\circ}C$. We first identified the best compensator for the thermal focus drift, using the Zernike polynomial decomposition method. With the selected compensator, the optics was shown to maintain the on-axis MTF at the Nyquist frequency of the detector over 10%, throughout the temperature range. Narcissus analysis investigated the existence of the thermal ghost images of the cold detector formed by the optics itself, which is quantified by the Narcissus Induced Temperature Difference (NITD). The reported design was shown to have an NITD of less than $1.5^{\circ}C$.