• Title/Summary/Keyword: and CFD

Search Result 5,407, Processing Time 0.032 seconds

A Study on Internal Flow of Mixing Tank by CFD (CFD를 이용한 가향 탱크 내부 유동에 관한 연구)

  • Chung, Han-Joo;Cho, Sung-Eel;Yang, Jin-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.32 no.2
    • /
    • pp.63-69
    • /
    • 2010
  • In the chemical, mineral and electronics, mechanically stirred tanks are widely used for complex liquid mixing processes. The paper present results from a computational fluid dynamics (CFD) model for the mixing tank in casing process. We used CFD software, FLUENT(Fluent, Inc, Lebanon, NH, version 6.2). A species transport model was used to model the problem. The flow patterns in a mixing tank, 1.6 m in diameter and 2.0 m in height, were studied using CFD. Numerical analysis results show that improved mixing tank was reduced low speed flow region and turbulent region in internal flow of mixing tank.

The Diffusion Behavier Analysis Caused by High Pressure Natural Gas Leak in Enclosure with and without Ventilation System (I) (밀폐공간 및 강제환기공간에의 천연가스 고압분출 시 농도 확산분포 거동해석 (I))

  • Ha, Tae-Woong;Ha, Jong-Man;Kim, Eun-Ja
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.23-31
    • /
    • 2012
  • The basic understanding of gas diffusion and technology to predict the diffusion phenomena are needed to prepare against a disaster of leakage of natural gas and to design better consistent and reliable gas supply system in enclosure. The experimental results of British Gas Technology Co. are used in present study as a reference of theoretical study using CFD. The present results of 2D CFD analysis for mass flow rate of nozzle release show good agreement with experimental results within 2.6 % error. 3D CFD analysis for the characteristics of natural gas diffusion in enclosure with various ventilation patterns also gives reasonable agreement with experimental results.

The Metacomputing System for CFD Program Developer (CFD 프로그램 개발자를 위한 메타컴퓨팅 시스템)

  • 강경우
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.43-51
    • /
    • 2001
  • Metacomputing system is the environment, which helps the users easily and promptly deal with their jobs. with integration of the distributed computing resources and visualization device. In this research, we have developed a prototype of a special-purpose metacomputing system for simulation in CFD(Computational Fluid Dynamics) field. This system supports the automatic remote compilation, transparent data distribution, the selection of appropriate computing resource, and the realtime visualization. This research can be summarized as following: a study on selecting resource and the integration of component systems. In the research of selecting computing resource, we use the property of CFD algorithm. In the research of realtime visualization. we modify a popular visualizer.

  • PDF

Evaluation of Hydraulic Behavior within Parallel arranged Upflow Sedimentation Basin Using CFD Simulation (I) - The influence of feed water inequity- (CFD를 이용한 병열 배열형 상향류식 침전지 수리해석에 관한 연구(I) - 침전지 내 유입유량 불균등 영향 조사 -)

  • Park, No-Suk;Kim, Seong-Su;Choi, Jong-Woong;Sung, Youl-Boong;Kang, Moon-Sun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.469-477
    • /
    • 2013
  • In order to investigate the influence of feed water inequity on the settling performance for parallel arranged upflow sedimentation basin in domestic G_WTP(Water Treatment Plant), CFD(Computational Fluid Dynamics) simulation were employed and ADV(Acoustic Doppler Velocimeter) measurements were carried out. From the results of both CFD simulations and ADV measurements, the differences among inlet flow rates to each inlet structure make turbulent energy dissipation uneven overall sedimentation basin. Especially local velocities in the near of both side wall were observed over the design overflow rate(74.4 mm/min). Also, it was confirmed that this inequity of inlet flow would exert an serious influence on the turbidity of settled water which is out from 8 troughs. Even though experimental velocities in full scale basin about 20% higher than the simulated, the results of ADV measurement were in good accordance with those of CFD simulations.

Rotor Blade Design of a 1MW Class HAWT and Evaluation of Aerodynamic Performance Using CFD Method (1MW급 수평축 풍력터빈 로터 블레이드 설계 및 CFD에 의한 공력성능 평가)

  • Mo, Jang-Oh;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • In this investigation, the aerodynamic performance evaluation of a 1MW class blade has been performed with the purpose of the verification of target output and its clear understanding of flow field using CFD commercial code, ANSYS FLUENT. Before making progress of CFD analysis the HERACLES V2.0 software based on blade element momentum theory was applied for confirmation of quick and approximate performance in the preliminary stage. The blade was designed to produce the target output of a 1MW class at a rated wind speed of 12m/s, which consists of five different airfoils such as FFA W-301, DU91-W250, DU93-W-210, NACA 63418 and NACA 63415 from hub to tip. The mechanical power by CFD is approximately 1.195MW, which is converted into the electrical power of 1.075MW if the system loss is considered to be 0.877.

Analysis of Resistance Performance for Various Trim Conditions on Container ship Using CFD (CFD를 이용한 컨테이너 선형의 트림별 저항성능 해석)

  • Seo, Dae-Won;Park, Hyun-Suk;Han, Ki-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.224-230
    • /
    • 2015
  • Vessels are traditionally optimized for a single condition, normally the contract speed at the design draft. The actual operating conditions quite often differ significantly. At other speed and draft combinations, adjusting the trim can often be used to reduce the hull resistance. Changing the trim is easily done by shifting ballast water. There are several ways to assess the effect of the trim on the hull resistance and fuel consumption, including in-service measurements, model tests, and CFD. In this paper, CFD is employed for the assessment of the resistance performance according to the trim conditions. The commercial CFD code of the STAR-CCM+ is utilized to evaluate the ship’s resistance performance on a 6,800 TEU container ship. To validate of the effectiveness of STAR-CCM+, the experimental result of the KCS hull form is compared with the result from STAR-CCM+. It is found that the total resistance of the 6,8000 TEU container ship was reduced by 2.6% in the case of a 1-m trim by head at 18knots.

A Comparison of Aerodynamic Prediction Methodologies for Missile Configurations (유도무기 형상의 공력 특성 예측 방법 비교)

  • Noh, Kyung-Ho;Kang, Donggi;Kim, Jaehyun;Kim, Young Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.755-762
    • /
    • 2022
  • The wind tunnel test data for the missile configuration were compared with analysis results using various semi-empirical code and CFD analysis code. The three types of configurations were used for comparison including 2 types of main wing, inline and interdigitate configuration that the main wing and tail intersect. Additionally, it was confirmed that the vortex flow was accurately predicted by comparing the CFD analysis result with the flow visualization test result.

Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (2) Development of CFD Model to Study the Effect of Tomato Plants on Internal Climate of Greenhouse - (공기유동해석을 통한 온실내 식물군 미기상 분석기술 개발 - (2)온실내 대기환경에 미치는 작물의 영향 분석을 위한 CFD 모델개발 -)

  • Lee In-Bok;Yun Nam-Kyu;Boulard Thierry;Roy Jean Claude;Lee Sung-Hyoun;Kim Gyoeng-Won;Hong Se-Woon;Sung Si-Heung
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.296-305
    • /
    • 2006
  • The heterogeneity of crop transpiration is important to clearly understand the microclimate mechanisms and to efficiently handle the water resource in greenhouses. A computational fluid dynamic program (Fluent CFD version 6.2) was developed to study the internal climate and crop transpiration distributions of greenhouses. Additionally, the global solar radiation model and a crop heat exchange model were programmed together. Those models programmed using $C^{++}$ software were connected to the CFD main module using the user define function (UDF) technology. For the developed CFD validity, a field experiment was conducted at a $17{\times}6 m^2$ plastic-covered mechanically ventilated single-span greenhouse located at Pusan in Korea. The CFD internal distributions of air temperature, relative humidity, and air velocity at 1m height were validated against the experimental results. The CFD computed results were in close agreement with the measured distributions of the air temperature, relative humidity, and air velocity along the greenhouse. The averaged errors of their CFD computed results were 2.2%,2.1%, and 7.7%, respectively.

Prediction of Rotordynamic Coefficients for High-Performance-Pump Seal Using CFD Analysis (CFD를 사용한 고성능 펌프 실의 동특성 계수 예측)

  • Choe, Bok-Seong;Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Precise prediction of rotordynamic coefficients for annular type seal of turbomachinery is necessary for enhancing their vibrational stability and various prediction methods have been developed. As the seal passage is designed complicatedly, the analysis based on Bulk-flow concept which has been mainly used in predicting seal dynamics is limited. In order to improve the seal rotordynamic prediction, full Navier-Stokes Equations with turbulent model derived in the seal flow passage have to be solved. In this study, 3D CFD(Computational Fluid Dynamics) analysis has been performed for predicting rotordynamic coefficients of non-contact type annular plain seal using FLUENT. Comparing with the results of Bulk-flow model analysis, the result of 3D CFD analysis shows good agreement.

Numerical Study of Turbulent Flow in a Hydrocyclone (하이드로사이클론 내의 난류유동해석)

  • Ju, Jong-Il;Choi, Young-Seok;Lee, Yong-Kab;Kim, Tak-Hyun;Kim, sangyong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.34-40
    • /
    • 2003
  • Numerical studies have been conducted to predict the solid-liquid separation efficiency of turbulent flow in a hydrocyclone using a commercial CFD code. To validate the CFD code, several preliminary numerical calculations are carried out to determine the influence of parameters such as grid systems, numerical schemes, and turbulence models. The numerical studies have been performed on the hydrocyclones with the different vortex finder geometries by changing the mass flow rate, and the results were compared with the experimental data. The results show that the CFD code can be used as a design tool to improve the performance of hydrocyclones.