• Title/Summary/Keyword: and CFD

Search Result 5,377, Processing Time 0.037 seconds

Design and Pressure Loss Evaluation of Vacuum Brazed Cooling Passage for Full Authority Digital Engine Control (항공기용 엔진제어기의 진공 브레이징 냉각유로 설계 및 압력손실 평가)

  • Han, Myeongjae;Seol, Jinwoon;Jeong, Seungho;Cha, Minkyung;Jang, Hoyoun;Kim, Junghoe
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.72-78
    • /
    • 2022
  • A vacuum brazed cooling passage for an aircraft engine controller was designed. In order to predict the total pressure loss, which is the main design factor of the cooling passage, theoretical and numerical methods for the major loss and the minor loss considering the overall shape of the cooling passage are presented. This design and evaluation method can predict the pressure loss of the complex cooling passage shape for various flow conditions at the initial design step.

M4 Semi-Freejet Test with Full-scale Vehicle Model (실기체급 비행체 모델에 대한 M4 준자유류 시험)

  • Juhyun Bae;Changwon Lim;Hojin Choi;Sangwook Jin;Jeongwoo Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.63-73
    • /
    • 2022
  • Investigation on operation of the test apparatus for the M4 semi-freejet tests with a full-scale vehicle model was carried out utilizing domestic facilities. An integrated design of the experimental apparatus and the vehicle model was obtained through iterative computational fluid dynamics (CFD) analysis. The test results showed that the M4 nozzle of the apparatus was fully expanded to provide required test conditions. It was also found that the intake of the vehicle model successfully started, and the corresponding shadowgraph images were recorded during the test. A variable nozzle of the model was set to adjust the back pressure of the model combustor, and wall-static pressures were measured to obtain the pressure distribution at the main locations of the model. The flame of torch ignitors and pilot fuel ignition were observed in a flame-holder of the combustor.

Economic Impact of HEMOS-Cloud Services for M&S Support (M&S 지원을 위한 HEMOS-Cloud 서비스의 경제적 효과)

  • Jung, Dae Yong;Seo, Dong Woo;Hwang, Jae Soon;Park, Sung Uk;Kim, Myung Il
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.261-268
    • /
    • 2021
  • Cloud computing is a computing paradigm in which users can utilize computing resources in a pay-as-you-go manner. In a cloud system, resources can be dynamically scaled up and down to the user's on-demand so that the total cost of ownership can be reduced. The Modeling and Simulation (M&S) technology is a renowned simulation-based method to obtain engineering analysis and results through CAE software without actual experimental action. In general, M&S technology is utilized in Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), Multibody dynamics (MBD), and optimization fields. The work procedure through M&S is divided into pre-processing, analysis, and post-processing steps. The pre/post-processing are GPU-intensive job that consists of 3D modeling jobs via CAE software, whereas analysis is CPU or GPU intensive. Because a general-purpose desktop needs plenty of time to analyze complicated 3D models, CAE software requires a high-end CPU and GPU-based workstation that can work fluently. In other words, for executing M&S, it is absolutely required to utilize high-performance computing resources. To mitigate the cost issue from equipping such tremendous computing resources, we propose HEMOS-Cloud service, an integrated cloud and cluster computing environment. The HEMOS-Cloud service provides CAE software and computing resources to users who want to experience M&S in business sectors or academics. In this paper, the economic ripple effect of HEMOS-Cloud service was analyzed by using industry-related analysis. The estimated results of using the experts-guided coefficients are the production inducement effect of KRW 7.4 billion, the value-added effect of KRW 4.1 billion, and the employment-inducing effect of 50 persons per KRW 1 billion.

A Fluid Analysis Study on Centrifugal Pump Performance Improvement by Impeller Modification (원심펌프 회전차 Modification시 성능개선에 관한 유동해석 연구)

  • Lee, A-Yeong;Jang, Hyun-Jun;Lee, Jin-Woo;Cho, Won-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • Centrifugal pump is a facility that transfers energy to fluid through centrifugal force, which is usually generated by rotating the impeller at high speed, and is a major process facility used in many LNG production bases such as vaporization seawater pump, industrial water and fire extinguishing pump using seawater. to be. Currently, pumps in LNG plant sites are subject to operating conditions that vary depending on the amount of supply desired by the customer for a long period of time. Pumps in particular occupy a large part of the consumption strategy at the plant site, and if the optimum operation condition is not available, it can incur enormous energy loss in long term plant operation. In order to solve this problem, it is necessary to identify the performance deterioration factor through the flow analysis and the result analysis according to the fluctuations of the pump's operating conditions and to determine the optimal operation efficiency. In order to evaluate operation efficiency through experimental techniques, considerable time and cost are incurred, such as on-site operating conditions and manufacturing of experimental equipment. If the performance of the pump is not suitable for the site, and the performance of the pump needs to be reduced, a method of changing the rotation speed or using a special liquid containing high viscosity or solids is used. Especially, in order to prevent disruptions in the operation of LNG production bases, a technology is required to satisfy the required performance conditions by processing the existing impeller of the pump within a short time. Therefore, in this study, the rotation difference of the pump was applied to the ANSYS CFX program by applying the modified 3D modeling shape. In addition, the results obtained from the flow analysis and the curve fitting toolbox of the MATLAB program were analyzed numerically to verify the outer diameter correction theory.

Detection with a SWNT Gas Sensor and Diffusion of SF6 Decomposition Products by Corona Discharges (탄소나노튜브 가스센서의 SF6 분해생성물 검출 및 확산현상에 관한 연구)

  • Lee, J.C.;Jung, S.H.;Baik, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • The detection methods are required to monitor and diagnose the abnormality on the insulation condition inside a gas-insulated switchgear (GIS). Due to a good sensitivity to the products decomposed by partial discharges (PDs) in $SF_6$ gas, the development of a SWNT gas sensor is actively in progress. However, a few numerical studies on the diffusion mechanism of the $SF_6$ decomposition products by PD have been reported. In this study, we modeled $SF_6$ decomposition process in a chamber by calculating temperature, pressure and concentration of the decomposition products by using a commercial CFD program in conjunction with experimental data. It was assumed that the mass production rate and the generation temperature of the decomposition products were $5.04{\times}10^{-10}$ [g/s] and over 773 K respectively. To calculate the concentration equation, the Schmidt number was specified to get the diffusion coefficient functioned by viscosity and density of $SF_6$ gas instead rather than setting it directly. The results showed that the drive potential is governed mainly by the gradient of the decomposition concentration. A lower concentration of the decomposition products was observed as the sensors were placed more away from the discharge region. Also, the concentration increased by increasing the discharge time. By installing multiple sensors the location of PD is expected to be identified by monitoring the response time of the sensors, and the information should be very useful for the diagnosis and maintenance of GIS.

An overall wind shielding program for enhancing driving stability (강풍시 도로의 주행안정성을 확보하기 위한 종합적인 방풍대책)

  • Kwon, Soon Duck;Jeong, Un Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.263-270
    • /
    • 2005
  • This paper presents a program for protecting vehicles against side winds on highways. The present study consists of three processes. The first one involves giving a guideline for evaluating driving safety in high winds. The second one involves making a guideline for determining the necessity of wind protection system for a certain road area. A reasonable procedure is suggested based on the probability model of wind data on weather stations and the correction of local topographical conditions. The third one involves design of wind barriers. Both CFD analyses and wind tunnel tests were performed to find the proper type of wind barrier considering vehicle controllability, structural safety, economical efficiency as well as driver's visibility. Performance of the designed wind fences was verified from field tests. The performance of the four different types of wind barrier installed at the elevated bridge were tested and some of the results were provided.

Study on Flow Analysis of Hot Gas Valve with Pintle (핀틀이 적용된 고온 가스 밸브 유동장 해석 기법에 관한 연구)

  • Lee, Kyungwook;Heo, Seonuk;Kwon, Sejin;Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.19-25
    • /
    • 2015
  • Numerical simulations of the hot gas valve with a pintle have been conducted in order to investigate the effect of numerical methods and computational domains. The grid sensitivity is checked by varying the grid number from 100,000 to 1,700,000. The existence of ambient region doesn't make the significant differences of the flow-field and the temperature distribution. Three turbulence models are adopted to figure out its influence on the thrust and temperature distribution: Spallart-Allmaras, RNG $k-{\varepsilon}$, $k-{\omega}$ SST. The thrusts of the hot gas valve are almost same in all cases of the simulation, however, there are about 5% difference in the temperature distribution. With the ambient region, the difference are observed in the temperature distribution with respect to the number of grids.

NUMERICAL ANALYSIS FOR FLOW CHARACTERISTICS WITH GEOMETRIC SHAPE AND CONTROL CONDITIONS IN SUBSEA BY-PASS VALVE (심해저 바이패스 밸브의 기하학적 형상과 제어조건에 따른 유동특성에 관한 수치해석적 연구)

  • Lee, J.H.;Min, C.H.;Oh, J.W.;Cho, S.;Kim, H.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2016
  • The present study has been carried out to analyze the flow characteristics with geometric shape and control conditions in subsea by-pass valve. The function of by-pass valve is to prevent reverse flow. In this study, the static analysis has been perform for analyzing fluid flow in open state. In order to consider the turbulent effect, the standard ${\kappa}-{\varepsilon}$ model was used. A variety of parametric studies, such as by-pass valve type or size, volume flow rate, leakage hole size, leakage hole position, block type, block shape, were performed. The pressure difference across the valve in the model broadened the flow channel cross-sectional area was greater than the base model for the same operating conditions. As the pipe diameter in the block decreases the pressure difference is greatly increased. The pressure difference according to block shape such as edge type and round was almost negligible. For the same Reynolds number the pressure difference was little changed according to the size of the valve.

The CFD Analysis for the Fatigue Life Evaluation of HRSG Structure (배열회수 보일러 구조물의 피로수명 평가를 위한 유동해석)

  • Kim, Jinbeom;Kim, Chulho
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.7-17
    • /
    • 2020
  • Heat recovery steam generator(HRSG) generate steam using the high-temperature exhaust energy of gas turbines. Structures of HRSG are damaged by flow induced vibration of flue gas in some cases. In order to evaluate fatigue life to predict damage to a structure, a vibration analysis caused from flue gas should be used to derive the Power Spectral Density(PSD). However, it is very difficult to experimentally derive the vibrations generated by the exhaust gas form of gas turbines, which is very fast and complex. It was able to establish a way to identify vibration characteristics depending on the location of the structure by using high computing resources, large eddy simulation (LES). Random vibration analysis through these vibration characteristics(PSD) can evaluate the fatigue life of a structure.

Computational Analysis on Calcium Dynamics of Vascular Endothelial Cell Modulated by Physiological Shear Stress

  • Kang, Hyun-Goo;Lee, Eun-Seok;Shim, Eun-Bo;Chnag, Keun-Shik
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • Flow-induced dilation of blood vessel is the result of a series of bioreaction in vascular endothelial cells(VEC). Shear stress change by blood flow in human artery or vein is sensed by the mechanoreceptor and responsible for such a chain reaction. The inositol(1,4,5)-triphophate($IP_3$) is produced in the first stage to elevate permeability of the intercellular membrane to calcium ions by which the cytosolic calcium concentration is consequently increased. This intracellular calcium transient triggers synthesis of EDRF and prostacyclin. The mathematical model of this VEC calcium dynamics is reproduced from the literature. We then use the Computational Fluid Dynamics(CFD) technique to investigate the blood stream dictating the VEC calcium dynamics. The pulsatile blood flow in a stenosed blood vessel is considered here as a part of study on thrombogenesis. We calculate the pulsating shear stress (thus its temporal change) distributed over the stenosed artery that is implemented to the VEC calcium dynamics model. It has been found that the pulsatile shear stress induces larger intracellular $Ca^{2+}$ transient plus much higher amount of EDRF and prostacyclin release in comparison with the steady shear stress case. It is concluded that pulsatility of the physiological shear stress is important to keep the vasodilation function in the stenosed part of the blood vessel.

  • PDF