DOI QR코드

DOI QR Code

M4 Semi-Freejet Test with Full-scale Vehicle Model

실기체급 비행체 모델에 대한 M4 준자유류 시험

  • Juhyun Bae (The First R&D Institute, Agency for Defense Development) ;
  • Changwon Lim (The First R&D Institute, Agency for Defense Development) ;
  • Hojin Choi (The First R&D Institute, Agency for Defense Development) ;
  • Sangwook Jin (The First R&D Institute, Agency for Defense Development) ;
  • Jeongwoo Kim (Aerospace Technology Research Institute, Agency for Defense Development)
  • Received : 2022.07.19
  • Accepted : 2022.10.10
  • Published : 2022.10.31

Abstract

Investigation on operation of the test apparatus for the M4 semi-freejet tests with a full-scale vehicle model was carried out utilizing domestic facilities. An integrated design of the experimental apparatus and the vehicle model was obtained through iterative computational fluid dynamics (CFD) analysis. The test results showed that the M4 nozzle of the apparatus was fully expanded to provide required test conditions. It was also found that the intake of the vehicle model successfully started, and the corresponding shadowgraph images were recorded during the test. A variable nozzle of the model was set to adjust the back pressure of the model combustor, and wall-static pressures were measured to obtain the pressure distribution at the main locations of the model. The flame of torch ignitors and pilot fuel ignition were observed in a flame-holder of the combustor.

국내 설비를 활용하여 실기체급 비행체 모델에 대한 M4 준자유류 시험을 수행하였다. 시험장치 및 비행체 모델은 반복적인 전산유체해석을 통해 통합적으로 설계/제작되었고, 해당 설비를 목표 시험 조건까지 가동하여 시험장치의 M4 노즐이 완전히 팽창하는 것을 확인하였다. 비행체 모델의 흡입구 주변의 가시화 영상을 획득하여 경사충격파가 생성되면서 비행체의 흡입구가 시동하는 것을 관측하였다. 비행체의 가변노즐을 구동하여 배압을 조절하면서 비행체 내부 유로의 벽면 압력 분포를 획득하였고, 연소기 내 화염안정화장치에서 점화용 토치 점화 및 점화보조제의 연소 현상을 관측하였다.

Keywords

Acknowledgement

본 연구는 국방과학연구소의 MJCC 다중복합사이클 신개념 극초음속 추진시스템 연구 및 이중램제트 추진기술 연구 과제의 지원을 받은 연구 결과이며, 본 시험을 수행하는데 협조해주신 국방과학연구소 산하 항공기술연구원 3부 및 (주)비츠로넥스텍 관계자분들께 감사드립니다.

References

  1. Bates, W.R. and Edwards, Z.B., "The Aeropropulsion Systems Test Facility (ASTF)," 3th Propulsion Conference, Orlando, FL, U.S.A., AIAA-1977-913, Jul. 1977.
  2. Guy, R., Rogers, R., Puster, R., Rock, K. and Diskin, G., "The NASA Langley Scramjet Test Complex," 32nd Joint Propulsion Conference and Exhibit, Lake Buena Vista, FL, U.S.A., AIAA-1996-3243, Jul. 1996.
  3. Serre, L. "ONERA Potential for Scramjet Ground Testing up to Mach 12". AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, Capua, Italy, AIAA-2005-3330, May 2005.
  4. Guan, R., Xu, J., Yu, K. and Tian, J., "Experimental validation of a new type of direct-connect facility for scramjet studies," Aerospace Science and Technology, Vol. 117, p. 106920, 2021.
  5. Lee, Y.J., Kang, S.H., Oh, J.H. and Yang, S.S., "Starting Characteristics Study of Scramjet Engine Test Facility(SETF)," Journal of the Korean Society of Propulsion Engineers, Vol. 15, No. 2, pp. 15-22, 2011.
  6. Yang, I.Y., Lee, Y.J., Kim, Y.M. and Lee, K.J., "Combustion Test of a Mach 5 Scramjet Engine Model," Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 3, pp. 9-14, 2013. https://doi.org/10.6108/KSPE.2013.17.3.009
  7. Yang S.M., Chang W.K., Kim K.Y., Park C., Park G.S. Byun J.R., Choi H.J., Jin Y.I., Jin S.W. and Hwang K.Y., "KAIST Scramjet Experiment Status", KSPE Fall Conference, Busan, Korea, pp. 44-45, 2017.
  8. Lee, S.M., Yu, I.S., Park, J.S., Ko, Y.S., Kim, S.J. and Lee, J.M., "Design and Cold Test of Semi-Freejet High Altitude Environment Simulation Test Facility for High-Speed Vehicle," Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 2, pp. 115-124, 2018.
  9. Na, J.J., Kim, J.W., Shin, J.I., Kim, M.W., Hyun, D.K. and Joeng, S.H., "Investigation on the Scramjet Semi-freejet Test Facility," KSPE Fall Conference, Busan, Korea, KSPE 2019-2053, 2019.
  10. Lee, Y.J. and Choi, Y.J., "A Study on Application of A Free-Jet Type Ground Propulsion Test Facility for A Scramjet Engine Intake Test," KSPE Fall Conference, Busan, Korea, KSPE 2020-2037, 2020.
  11. Rodi, P.E., Emami, S. and Trexler, C.A., "Unsteady pressure behavior in a ramjet/scramjet inlet," Journal of Propulsion and Power, Vol. 12, No. 3, pp. 486-493, 1996. https://doi.org/10.2514/3.24061
  12. Wagner, J.L., Yuceil, K.B., Valdivia, A., Clemens, N.T. and Dolling, D.S., "Experimental Investigation of Unstart in an Inlet/Isolator Model in Mach 5 Flow," AIAA Journal, Vol. 47, No. 6, pp. 1528-1542, 2009. https://doi.org/10.2514/1.40966
  13. Chang, J., Wang, L., Bao, W., Qin, J., Niu, J. and Xue, W., "Novel Oscillatory Patterns of Hypersonic Inlet Buzz," Journal of Propulsion and Power, Vol. 28, No. 6, pp. 1214-1221, 2012. https://doi.org/10.2514/1.B34553
  14. Li, Z., Gao, W., Jiang, H. and Yang, J., "Unsteady Behaviors of a Hypersonic Inlet Caused by Throttling in Shock Tunnel," AIAA Journal, Vol. 51, No. 10, pp. 2485-2492, 2013. https://doi.org/10.2514/1.J052384
  15. Valdivia, A., Yuceil, K.B., Wagner, J.L., Clemens, N.T. and Dolling, D.S., "Control of Supersonic Inlet-Isolator Unstart Using Active and Passive Vortex Generators," AIAA Journal, Vol. 52, No. 6, pp. 1207-1218, 2014.
  16. Zhang, Q.F., Tan, H.J., Sun, S., Bu, H.X. and Rao, C.Y., "Unstart of a Hypersonic Inlet with Side Compression Caused by Downstream Choking," AIAA Journal, Vol. 54, No. 1, pp. 28-38, 2016. https://doi.org/10.2514/1.J054095
  17. Zhang, Q.-F., Tan, H.-J., Chen, H., Yuan, Y.-Q. and Zhang, Y.-C., "Unstart Process of a Rectangular Hypersonic Inlet at Different Mach Numbers," AIAA Journal, Vol. 54, No. 12, pp. 3681-3691, 2016. https://doi.org/10.2514/1.J055005
  18. Wang, C., Xue, L. and Tian, X., "Experimental characteristics of oblique shock train upstream propagation," Chinese Journal of Aeronautics, Vol. 30, No. 2, pp. 663-676, 2017. https://doi.org/10.1016/j.cja.2017.02.004
  19. Liu, Q., Baccarella, D., McGann, B. and Lee, T., "Cavity-Enhanced Combustion Stability in an Axisymmetric Scramjet Model," AIAA Journal, Vol. 57, No. 9, pp. 3898-3909, 2019. https://doi.org/10.2514/1.J058204
  20. Liu, Q., Kang, K. and Do, H., "Inlet buzz phenomenon driven by flow choking in high-enthalpy Mach 4.5 flows using circular scramjet models," Acta Astronautica, Vol. 193, pp. 406-417, 2022. https://doi.org/10.1016/j.actaastro.2022.01.030
  21. Cui, T., He, X., Yu, D. and Tang, S., "Multistability and Loops-Coupled Hysteresis: Flight-Test Analysis on Error Detection of Inlet Start/Unstart," Journal of Propulsion and Power, Vol. 28, No. 3, pp. 496-503, 2012. https://doi.org/10.2514/1.B34349
  22. Chang, J., Wang, L., Bao, W., Yang, Q. and Qin, J., "Experimental Investigation of Hysteresis Phenomenon for Scramjet Engine," AIAA Journal, Vol. 52, No. 2, pp. 447-451, 2014. https://doi.org/10.2514/1.J052505
  23. Li, N., Chang, J., Jiang, C., Yu, D., Bao, W., Song, Y. and Jiao, X., "Unstart/Restart Hysteresis Characteristics Analysis of an over-under TBCC Inlet Caused by Backpressure and Splitter". Aerospace Science and Technology, Vol. 72, pp. 418-425, 2018. https://doi.org/10.1016/j.ast.2017.11.026
  24. Deng, W., Le, J., Yang, S., Zhang, W. and Tian, Y., "Experimental research of air-throttling ignition for a scramjet at Ma 6.5," Chinese Journal of Aeronautics, Vol. 30, No. 3, pp. 932-938, 2017. https://doi.org/10.1016/j.cja.2017.03.017
  25. Tian, Y., Yang, S., Xiao, B., Zhong, F. and Le, J., "Investigation of ignition characteristics in a kerosene fueled supersonic combustor," Acta Astronautica, Vol. 161, pp. 425-429, 2019. https://doi.org/10.1016/j.actaastro.2019.03.024