• 제목/요약/키워드: anchor load

검색결과 304건 처리시간 0.022초

아스팔트용 고강도 앵커시스템의 인발강도식 검토에 관한 기초적 연구 (A Fundamental Study on the Pullout Strength Equation of High Strength Anchor for Asphalt Pavement)

  • Choi, Jaemin;Lee, Seungyong;Sung, Kitae;Han, Youngdoo
    • 한국재난정보학회 논문집
    • /
    • 제13권3호
    • /
    • pp.313-321
    • /
    • 2017
  • 인장하중을 받는 아스팔트 도로용 고강도 앵커의 강도특성에 관한 기초 성능을 규명하기 위해 앵커 매립깊이, 포장두께, 앵커 직경, 앵커 종류, 실험 온도, 에폭시 종류, 그룹인발 수량 등을 실험변수로 하여 정적 인발실험을 실시하고, 아스팔트 앵커의 인발강도에 대하여 분석을 실시하였다. 그 결과 아스팔트 앵커의 강재강도는 기존 콘크리트 앵커의 강재강도식을 적용하면 1.08배 이상의 안전율을 확보할 수 있으므로 콘크리트 앵커 강재강도식을 사용하여도 무관한 것으로 나타났다. 아스팔트 앵커의 실험을 통해 얻은 인발하중을 제안식과 비교하면 약 ${\pm}10%$ 이내의 오차로 근사치를 나타내고 있다. 이로부터 아스팔트 앵커의 경우에도 콘크리트 앵커와 동일한 투영면적의 비가 성립될 수 있을 것으로 판단된다.

Monitoring of tension force and load transfer of ground anchor by using optical FBG sensors embedded tendon

  • Kim, Young-Sang;Sung, Hyun-Jong;Kim, Hyun-Woo;Kim, Jae-Min
    • Smart Structures and Systems
    • /
    • 제7권4호
    • /
    • pp.303-317
    • /
    • 2011
  • A specially designed tendon, which is proposed by embedding an FBG sensor into the center king cable of a 7-wire strand tendon, was applied to monitor the prestress force and load transfer of ground anchor. A series of tensile tests and a model pullout test were performed to verify the feasibility of the proposed smart tendon as a measuring sensor of tension force and load transfer along the tendon. The smart tendon has proven to be very effective for monitoring prestress force and load transfer by measuring the strain change of the tendon at the free part and the fixed part of ground anchor, respectively. Two 11.5 m long proto-type ground anchors were made simply by replacing a tendon with the proposed smart tendon and prestress forces of each anchor were monitored during the loading-unloading step using both FBG sensor embedded in the smart tendon and the conventional load cell. By comparing the prestress forces measured by the smart tendon and load cell, it was found that the prestress force monitored from the FBG sensor located at the free part is comparable to that measured from the conventional load cell. Furthermore, the load transfer of prestressing force at the tendon-grout interface was clearly measured from the FBGs distributed along the fixed part. From these pullout tests, the proposed smart tendon is not only expected to be an alternative monitoring tool for measuring prestress force from the introducing stage to the long-term period for health monitoring of the ground anchor but also can be used to improve design practice through determining the economic fixed length by practically measuring the load transfer depth.

모노 텐던 앵커 헤드의 변형 추정을 위한 수치해석 (Numerical Analysis for the Deformation of a Mono Tendon Anchor Head)

  • 박장호;양현주;조정래
    • 한국안전학회지
    • /
    • 제29권1호
    • /
    • pp.25-30
    • /
    • 2014
  • This paper deals with a numerical study on the deformation of a mono tendon anchor head. The anchor head is used to introduce the compression to concrete, and consists of wedges and a head. All kinematics, material and contact nonlinearity are included in the precise analysis of a mono tendon anchor head. A numerical study on a mono tendon anchor head is performed to investigate effects of friction and eccentricity of load by ABAQUS. From the numerical results, it is verified that the deformation of a mono tendon anchor head is affected by characteristics of materials, boundary condition between wedge and anchor head, eccentricity of load, etc.

다중정착 지반앵커의 하중전달 특성에 관한 연구 (A study on the characteristics of multi load transfer ground anchor system)

  • 김지호;정현식;권오엽;신종호
    • 한국터널지하공간학회 논문집
    • /
    • 제16권1호
    • /
    • pp.25-50
    • /
    • 2014
  • 본 연구에서는 앵커의 대표적 유형인 인장형 앵커와 압축형 앵커, 최근 개발되어 널리 사용되고 있는 다중정착 지반앵커의 지반 내 거동을 비교, 분석하여 그 적용 특성을 평가하였다. 이를 위하여 대형모형실험과 현장시험을 통하여 앵커 유형별 하중-전단응력 관계를 확인하였으며 이를 수치해석 결과와 비교, 분석하였다. 검토결과 앵커 유형에 따른 하중과 지반강도, 전단응력의 관계를 규명할 수 있었으며, MLT 앵커는 인장형 앵커에 비해 1.3배, 압축형 앵커에 비해 1.5배의 인발저항 효과가 있는 것을 확인할 수 있었다. 본 연구결과를 다양한 지반조건에서 확장하여 적용할 경우 지반조건에 따른 앵커 유형별로 적용이 가능한 최대 인발 저항력을 제안할 수 있을 것으로 판단되며, 이는 지반앵커의 설계 및 시공에서 매우 유용하게 이용될 수 있을 것이다.

반복-수평력을 받는 프리캐스트기둥- RC기초 Anchor 접합부의 내력 실험 연구 (Strength Experimental Study on Precast Column-R.C. Foundation Anchor Joint Subjected to Cyclic Horizontal Loading)

  • 이호;정환목;차병기;변상민
    • 한국공간구조학회논문집
    • /
    • 제9권2호
    • /
    • pp.45-52
    • /
    • 2009
  • 이 논문은 반복-수평력을 받는 프리캐스트 기둥-RC 기초 Anchor 접합부의 반복-수평력에 대한 내력 특성을 규명하기 위함이다. 본 연구는 하부 기초에 프리캐스트 콘크리트 기둥과 기초를 Anchor식으로 접합한 콘크리트 구조체가 정확한 응력전달 경로 및 파괴 메커니즘에 있어서 기존의 콘크리트-강재 연결부와 어떠한 차이가 있는지 제시한다. 반복-수평력 작용하의 철근의 인발력 실험결과는 프리캐스트 기둥-RC 기초 Anchor 시공에 필요한 철근의 최소 필요 삽입 깊이를 제시한다. 또한, 실험을 통해 제시된 응력 전달 경로 및 파괴 메커니즘을 제품별 메뉴얼에 제시되어 있는 메커니즘과 비교, 검토함으로서 접합부의 명확한 응력전달 경로 및 파괴 메커니즘을 시공자의 요구 성능에 맞게 제시한다. 그러므로 본 연구를 통해 프리캐스트 콘크리트 기둥의 정확한 주근의 개수, 공칭직경, 정착 길이 등에 대한 최적의 설계 조건을 제시함으로써, 시공 시 이들에 대한 정확한 데이터를 제공한다.

  • PDF

철근콘크리트 교량의 충격전달장치 앵커시스템의 전단파괴거동 (Shear Fracture Behavior of Anchor Systems for Shock Transmission Unit in RC Bridge)

  • 김태상;송하원;변근주;안창모
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1097-1102
    • /
    • 2001
  • Seismic safety of continuous span concrete bridge can be enhanced by distributing a large seismic lateral load to each supporting pier. A new viscoelastic device called Shock Transmission Unit(STU), which is a simple cylinder-piston assembly packed with a so-called silicone putty compound, enables the lateral seismic load to be transmitted to the pier by installation of the device to movable bearings of the bridge. The seismic safety of concrete bridges having the STU depends on not only safety of the bridges globally but also safety of anchor systems which anchors the STU to concrete pier. An experimental investigation is performed to study the behavior of cast-in-place anchor and post-installed anchor subjected to shear load statically and cyclically according to different edge distance, embedment length, and anchor spacing. Finally, the experimental results are compared with results by design methods of ACI and CCD, and results by FEM analysis.

  • PDF

FBG 센서가 내장된 스마트 앵커를 이용한 앵커와 그라우트의 하중전이 측정 (Measurement of Load Transfer between Anchor and Grout using Optical FBG Sensors embedded in Smart Anchor)

  • 서동남;김영상;김재민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.505-510
    • /
    • 2008
  • FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, was adapted to develope a smart anchor. A series of pullout tests were performed to verify the feasibility of smart anchor and find out the load transfer mechanism around the steel wire fixed to rock with grout. Distribution of shear stresses at steel wire-grout interface is assessed from the measured strain distribution by the optical fiber sensors and compared with stress distributions predicted by Farmer's and Aydan's formulas. It was found that present theoretical formulas may underestimate the failure depth and magnitude of shear stresses when the pullout loads increase.

  • PDF

풍화토지반에서 전기방전에 의한 확공앵커의 극한 인발력 (Ultimate Pullout Capacity of Underreamed Anchors Using Electric Discharge in weathered soil)

  • 김성규;김낙경;김재원;강병철;김태훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1354-1359
    • /
    • 2009
  • Ground anchor should not be used in soft clay, because anchor resistance can not be guaranteed. However, there is a way to increase the capacity of anchors. The anchor is an underreamed anchor by using high voltage electric discharge energy. In this study, a series of field test were carried out in order to find ultimate load of underreamed anchors in weathered soil at the new apartment construction site located in Inchon, Korea. Data were analyzed in order to define a relation between ultimate load and the number of electric discharge.

  • PDF

확공을 이용한 지압형 앵커의 인발거동 특성 연구 (The Study of Pullout-Behavior Characteristics of The Ground Anchor Using Expanded Hole)

  • 민경남;정찬묵;정대호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1502-1508
    • /
    • 2011
  • Ground anchor expands the hollow wall of settled part and has the structure which resists the designed tensile load by the bearing pressure generated by the wedge of the anchor body pressing in the expanded part. Such ground anchor has been recognized for stability and economicality since 1960s in technologically advanced nations such as Japan and Europe, and in 1970s, the Japan Society of Soil Engineering has established and announced the anchor concept map. The ground anchor introduced in Korea, however, has the structural problem where the tensile strength is comes only from the ground frictional force due to expansion of the wedge body. In an interval where the ground strength is locally reduced due to fault, discontinuation or such, this is pointed out as a critical weakness where the anchor body of around 1.0m must resist the tensile load. Also, in the installation of concrete block, the concentrated stress of concrete block constructed on the uneven rock surface causes damage, and many such issues in the anchor head have been reported. Thus, in this study, by using the expanded bit for precise expansion of settled part, the ground anchor system was completed so that the bearing pressure of ground anchor can be expressed as much as possible, and the bearing plate was inserted into the ground to resolve the existing issues of concrete block. Through numerical analysis and pullout test executed for verification of site applicability, the pullout-behavior characteristics of anchor was analyzed.

  • PDF

Detection of flaw in steel anchor-concrete composite using high-frequency wave characteristics

  • Rao, Rajanikant;Sasmal, Saptarshi
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.341-359
    • /
    • 2019
  • Non-monolithic concrete structural connections are commonly used both in new constructions and retrofitted structures where anchors are used for connections. Often, flaws are present in anchor system due to poor workmanship and deterioration; and methods available to check the quality of the composite system afterward are very limited. In case of presence of flaw, load transfer mechanism inside the anchor system is severely disturbed, and the load carrying capacity drops drastically. This raises the question of safety of the entire structural system. The present study proposes a wave propagation technique to assess the integrity of the anchor system. A chemical anchor (embedded in concrete) composite system comprising of three materials viz., steel (anchor), polymer (adhesive) and concrete (base) is considered for carrying out the wave propagation studies. Piezoelectric transducers (PZTs) affixed to the anchor head is used for actuation and the PZTs affixed to the surrounding concrete surface of the concrete-anchor system are used for sensing the propagated wave through the anchor interface to concrete. Experimentally validated finite element model is used to investigate three types of composite chemical anchor systems. Studies on the influence of geometry, material properties of the medium and their distribution, and the flaw types on the wave signals are carried out. Temporal energy of through time domain differentiation is found as a promising technique for identifying the flaws in the multi-layered composite system. The present study shows a unique procedure for monitoring of inaccessible but crucial locations of structures by using wave signals without baseline information.