• Title/Summary/Keyword: anchor

Search Result 1,619, Processing Time 0.037 seconds

A Study on the Concrete Breakout Capacity Evaluation of Medium-to-Large size CIP Anchor Bolts under Tension Loading (인장하중을 받는 중대형급 선설치 앵커볼트의 콘크리트파괴강도 평가를 위한 연구)

  • Park, Yong-Myung;Jeon, Myeong-Hui;Lee, Kun-Jun;Kim, Cheol-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.493-501
    • /
    • 2011
  • The $45^{\circ}$cone failure theory has been used for concrete anchor bolt design, but the CCD (concrete capacity design) method was adopted as a new design method in 2000. The method was allowed to be used, however, only for anchors with a diameter of less than 50 mm and an embedment depth of less than 635 mm because it is based on the experiment results from medium-sized to small anchor bolts. Therefore, it is necessary to develop a rational concrete breakout capacity equation for medium-sized to large anchor bolts. In this study, tension tests on an M56 cast-in-place single anchor bolt with an effective embedment depth of 400-450 mm were carried out for the five test specimens. Based on the test results together with the other recent test results, the applicability of the concrete breakout capacity equation in the current design code to the large to medium-sized anchor bolts with an embedment depth of 280-1,200 mm was estimated.

Experimental Evaluation of Pullout Strength of Long-Rawlplug Screw Anchor according to the Compressive Strength of Concrete and Embedded Length (콘크리트 압축강도 및 매입깊이에 따른 긴 칼블럭앵커의 뽑힘강도 평가)

  • Park, Jun-Ryeol;Yang, Keun-Hyeok;Kim, Sang-Hee;Oh, Na-Kyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.84-89
    • /
    • 2021
  • In 2017, the Gyeongju earthquake caused many casualties and considerable property damage by overturning and dropping blocks and bricks. Various reinforcement techniques were proposed, but some problems, such as short length or difficult construction, were encountered. Therefore, this study proposes a long-rawlplug screw anchor to improve the existing rawlplug anchor and conducts an experiment to evaluate the pullout strength. Variables in the pullout test were the compressive strength of concrete and the embedded length of the long-rawlplug screw anchor. According to the results, the pullout strength of the long-rawlplug screw anchor increased as the compressive strength of concrete increased, and they were not affected by the embedded length. Rather, it was found that the screw length of the long-rawlplug was important to the pullout strength.

A Study on the Cut-slope Maintenance according to Anchor Tension Force (앵커 긴장력 변화에 따른 비탈면 유지관리 연구)

  • Park, Byungsuk;Kim, Wooseok;Hwang, Sungpil;Kwon, Oil
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.673-682
    • /
    • 2020
  • The ground shear force at the expected failure surface and resistance force due to reinforced anchor can act as important factors according to a failure type from the stability viewpoint at a slope. Furthermore, the anchor's axial force may vary at an anchor-reinforced slope due to ground weathering, settlement, and corrosion in the incompletely anti-corrosion treated steel wire strand at a ground where the bearing plate is installed. However, in case that the resistance force of the anchor is locally lost due to the variation of the anchor's axial force, the resistance force may not play the role so that the external force tends to be transferred to the surrounding anchors, causing an increase in the tensile force in the surrounding anchors. Accordingly, a stability problem at the entire slope may occur, which requires much attention. Thus, this study proposed a method to monitor a variation trend of the tensile force of anchors installed at a slope and infer the external stability at the entire slope considering the monitoring result.

Magnetic resonance imaging analysis of screw in-type lateral anchor pull-out in large to massive rotator cuff repair in patients older than 60 years

  • Lee, Sang-Yoon;Noh, Young-Min
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2022
  • Background: This study was performed to identify the incidence of screw in-type lateral anchor pull-out in patients older than 60 years who underwent rotator cuff repair for large to massive rotator cuff tear (RCT). Methods: We reviewed 25 patients over 60 who were diagnosed with large to massive RCT and underwent arthroscopic rotator cuff repair in our hospital from March 2017 to February 2021. Preoperative tear size (anterior to posterior, medial to lateral) was measured via preoperative magnetic resonance imaging (MRI). All 25 patients underwent MRI scanning on postoperative day 1 and at 3 months after surgery. The change of anchor position was measured in axial views on MRI images postoperative day 1 and 3 months after surgery. And it was statistically compared according to bone mineral density (BMD), sex, and number of lateral anchors. Results: Two MRIs (postoperative day 1 and 3 months) in 25 patients were compared. Anchor pull-out occurred in six patients during 3 months (6.7%), and the mean pull-out length difference was 1.56 mm (range, 0.16-2.58 mm). There was no significant difference in the number of pull-out anchors, degree of pull-out difference by comparing BMD (A, BMD≤-2.5; B, BMD>-2.5), sex, or number of anchors used in each surgery (C, two anchors; D, three anchors) (p>0.05). Conclusions: Pull-out of screw in-type anchors was rarely observed and the mean pull-out length difference was negligibly small in our study. The screw in-type lateral anchor seems to be a decent option without concern of anchor pull-out even in elderly patients.

A Study on Effect of Anchor Plate on Concrete Breakout Capacity and Elasticity-Based Analysis Model of Anchor Plate (앵커플레이트가 콘크리트 파괴 강도에 미치는 영향 및 탄성기반 해석 모델에 대한 연구)

  • Shin, Ji-Uk;You, Young-Chan;Choi, Ki-Seon;Kim, Ho-Ryong;Kim, Jun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.381-388
    • /
    • 2013
  • This study presents that effect of anchor plate on concrete breakout strength was evaluated. The addition of the anchor plate is to improve the concrete breakout capacity for a single anchor system in a thin-walled concrete panel (Insulated concrete sandwich wall panel). In this study, an elasticity-based simplified model was developed and used to predict effect on the anchor plate. Flexural stresses of the plate with respect to the concrete breakout strength obtained from CCD (Capacity Concrete Design) approach were compared with the test results. Through the test results, while the concrete breakout strength was improved due to increment of the width and thickness of the anchor plate, improvement of the strength was steadily declined. In addition, the It was observed that the analytical and experimental flexure of the anchor plate was comparatively in good agreement using the simplified elastic analysis model.