• 제목/요약/키워드: anatase phase

검색결과 267건 처리시간 0.028초

Preparation of Different Fe Containing TiO2 Photocatalysts and Comparison of Their Photocatalytic Activity

  • Meng, Ze-Da;Zhang, Kan;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제20권4호
    • /
    • pp.228-234
    • /
    • 2010
  • In this paper, Fe-$TiO_2$ and Fe-fullerene/$TiO_2$ composite photocatalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. $TiO_2$, Fe-$TiO_2$ and Fe-fullerene/$TiO_2$ were characterized by scanning electron microscopy (SEM), Transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic oxidation of methylene blue (MB) solution. XRD patterns of the composites showed that the photocatalyst composite contained a typical single and clear anatase phase. The surface properties shown by SEM presented a characterization of the texture on Fe-fullerene/$TiO_2$ composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of O, C and Ti elements. Moreover, peaks of the Fe element were observed in the Fe-$TiO_2$ and Fe-fullerene/$TiO_2$ composites. The degradation of MB solution by UV-light irradiation in the presence of photocatalyst compounds was investigated in complete darkness. The degradation of MB concentration in aqueous solution occurred via three kinds of physical phenomena: quantum efficiency of the fullerene; organo-metallic reaction of the Fe compound; and decomposition of $TiO_2$. The degradation rate of the methylene blue solution increased when using Fe-fullerene/$TiO_2$ compounds.

CrOx/TiO2 촉매의 결정성과 TCE 산화반응 활성 (Crystallinity of CrOx/TiO2 Catalysts and Their Activity in TCE Oxidation)

  • 김문현;이효상
    • 한국환경과학회지
    • /
    • 제23권5호
    • /
    • pp.829-837
    • /
    • 2014
  • Titania-supported chromium oxides with different loadings have been embarked in catalytic oxidation of trichloroethylene (TCE) to inquire association of the formation of crystalline $Cr_2O_3$ with catalytic performances. A better activity in the oxidative TCE decomposition at chosen temperatures was represented when chromium oxides ($CrO_x$) had been dispersed on pure anatase-type $TiO_2$ (DT51D) rather than on phase-mixed and sulfur-contained ones such as P25 and DT51. The extent of TCE oxidation at temperatures below $350^{\circ}C$ was a strong function of $CrO_x$ content in $CrO_x$/DT51D $TiO_2$, and a noticeable point was that the catalyst has two optimal $CrO_x$ loadings in which the lowest $T_{50}$ and $T_{90}$ values were measured for the TCE oxidation. This behavior in the activity with respect to $CrO_x$ amounts could be associated with the formation of crystalline $Cr_2O_3$ on the support surface, that is less active for the oxidation reaction, and an easier mobility of the surface oxygen existing in noncrystalline $CrO_x$ species with higher oxidation states, such as $Cr_2O_8$ and $CrO_3$.

Oxide Nanolayers Grown on New Ternary Ti Based Alloy Surface by Galvanic Anodizing-Characteristics and Anticorrosive Properties

  • Calderon Moreno, J.M.;Drob, P.;Vasilescu, C.;Drob, S.I.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • 제16권5호
    • /
    • pp.257-264
    • /
    • 2017
  • Film of new Ti-15Zr-5Nb alloy formed during galvanic anodizing in orthophosphoric acid solution was characterized by optical microscope, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman micro-spectroscopy. Its anticorrosive properties were determined by electrochemical techniques. The film had a layer with nanotube-like porosity with diameters in 500-1000 nm range. The nano layer contained significant amounts of P and O as well as alloying element. Additionally, Raman micro-spectroscopy identified oxygen as oxygen ion in $TiO_2$ anatase and phosphorous as $P_2O_7{^{4-}}$ ion in phosphotitanate compound. All potentiodynamic polarization curves in artificial Carter-Brugirard saliva with pH values (pH= 3.96, 7.84, and 9.11) depending on the addition of 0.05M NaF revealed nobler behavior of anodized alloy and higher polarization resistance indicating the film is thicker and more compact nanolayer. Lower corrosion rates of the anodized alloy reduced toxicity due to less released ions into saliva. Bigger curvature radii in Nyquist plot and higher phase angle in Bode plot for the anodized alloy ascertain a thicker, more protective, insulating nanolayer existing on the anodized alloy. Additionally, ESI results indicate anodized film consists of an inner, compact, barrier, layer and an outer, less protective, porous layer.

Charge Transport Characteristics of Dye-Sensitized TiO2 Nanorods with Different Aspect Ratios

  • Kim, Eun-Yi;Lee, Wan-In;Whang, Chin Myung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2671-2676
    • /
    • 2011
  • Nanocrystalline $TiO_2$ spherical particle (NP) with a dimension of 5 ${\times}$ 5.5 nm and several nanorods (NR) with different aspect ratios (diameter ${\times}$ length: 5 ${\times}$ 8.5, 4 ${\times}$ 15, 4 ${\times}$ 18 and 3.5 ${\times}$ 22 nm) were selectively synthesized by a solvothermal process combined with non-hydrolytic sol-gel reaction. With varying the molar ratio of TTIP to oleic acid from 1:1 to 1:16, the NRs in the pure anatase phase were elongated to the c-axis direction. The prepared NP and NRs were applied for the formation of nanoporous $TiO_2$ layers in dye-sensitized solar cell (DSSC). Among them, NR2 ($TiO_2$ nanorod with 4 ${\times}$ 15 nm) exhibited the highest cell performance: Its photovoltaic conversion efficiency (${\eta}$) of 6.07%, with $J_{sc}$ of 13.473 mA/$cm^2$, $V_{oc}$ of 0.640 V, and FF of 70.32%, was 1.44 times that of NP with a size of 5 ${\times}$ 5.5 nm. It was observed from the transient photoelectron spectroscopy and the incident photon to current conversion efficiency (IPCE) spectra that the $TiO_2$ films derived from NR2 demonstrate the longest electron diffusion length ($L_e$) and the highest external quantum efficiency (EQE).

수열합성법에 의한 과산화티탄 수용액으로부터 이산화티탄의 합성 및 메틸렌블루의 광분해반응 (Synthesis of Titanium Dioxides from Peroxotitanate Solution Using Hydrothermal Method and Their Photocatalytic Decomposition of Methylene Blue)

  • 정원영;이승호;김대성;이근대;박성수;홍성수
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.417-422
    • /
    • 2010
  • 서로 다른 관능기를 가진 카르복시산 화합물을 첨가제로 하여 과산화티탄 수용액으로부터 수열합성법으로 나노 크기의 이산화티탄을 제조하였다. 제조된 나노 크기의 이산화티탄의 물리적 성질을 조사하였으며, 이들을 사용하여 메틸렌블루의 광분해 반응에서의 활성을 조사하였다. 첨가된 카르복시산 화합물에 관계없이 아나타제형 나노 크기의 이산화티탄이 합성되었으며, 소성온도가 $700^{\circ}C$ 이상에서는 아나타제 결정구조가 루틸 결정구조로 변환되기 시작하였다. 광촉매 반응의 활성은 카르복시산의 탄소수가 커질수록 증가하였으며, 숙신산을 첨가제로 한 경우와 $500^{\circ}C$에서 소성시킨 경우에 가장 높은 활성을 보여주었다.

Biotemplate Synthesis of Micron Braid Structure CeO2-TiO2 Composite and Analysis of its Catalytic Behavior for CO Oxidation

  • Wang, Chencheng;Jing, Lutian;Chen, Mengpin;Meng, Zeda;Chen, Zhigang;Chen, Feng;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제54권1호
    • /
    • pp.23-27
    • /
    • 2017
  • A series of $CeO_2-TiO_2$ composite samples with different Ce/Ti molar ratios were prepared by the paper template. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm a face-centered cubic lattice of $CeO_2$ with Ce/Ti =8:2 or 9:1 and a two phase mixture of anatase titania and face-centered cubic ceria with Ce/Ti = 7 : 3. The field emission scanning electron microscopy (FESEM) results suggest that the products are micron braid structures consisting of fibers with diameters in a range of $1-6{\mu}m$ and lengths of several hundred micrometers. $N_2$ absorption-desorption testing shows that the composite at Ce/Ti molar fraction of 8 : 2 has the largest BET surface area (about $81m^2{\cdot}g^{-1}$). Compared to the pure $CeO_2$ sample, the composites show superior catalytic activity for $H_2$ reduction and CO oxidation. For the micron braid structure $CeO_2-TiO_2$ composite (Ce/Ti = 8 : 2), due to the high surface area and the solid solution with appropriate $Ti^{4+}$ incorporation, the CO conversion at about $280^{\circ}C$ was above 50% and at $400^{\circ}C$ was 100%.

유기금속 화학기상증착법을 이용한 TiO2 나노선 제조 (Synthesis of TiO2 Nanowires by Metallorganic Chemical Vapor Deposition)

  • 허훈회;웬티깅화;임재균;김길무;김의태
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.686-690
    • /
    • 2010
  • $TiO_2$ nanowires were self-catalytically synthesized on bare Si(100) substrates using metallorganic chemical vapor deposition. The nanowire formation was critically affected by growth temperature. The $TiO_2$ nanowires were grown at a high density on Si(100) at $510^{\circ}C$, which is near the complete decomposition temperature ($527^{\circ}C$) of the Ti precursor $(Ti(O-iPr)_2(dpm)_2)$. At $470^{\circ}C$, only very thin (< $0.1{\mu}m$) $TiO_2$ film was formed because the Ti precursor was not completely decomposed. When growth temperature was increased to $550^{\circ}C$ and $670^{\circ}C$, the nanowire formation was also significantly suppressed. A vaporsolid (V-S) growth mechanism excluding a liquid phase appeared to control the nanowire formation. The $TiO_2$ nanowire growth seemed to be activated by carbon, which was supplied by decomposition of the Ti precursor. The $TiO_2$ nanowire density was increased with increased growth pressure in the range of 1.2 to 10 torr. In addition, the nanowire formation was enhanced by using Au and Pt catalysts, which seem to act as catalysts for oxidation. The nanowires consisted of well-aligned ~20-30 nm size rutile and anatase nanocrystallines. This MOCVD synthesis technique is unique and efficient to self-catalytically grow $TiO_2$ nanowires, which hold significant promise for various photocatalysis and solar cell applications.

TiO2 sol-gel 합성에 의한 파라 아라미드 섬유의 내광성 증진 연구 (Improving the Photo-stability of p-aramid Fiber by TiO2 Nanosol)

  • 박성민;권일준;심지현;이재호;김삼수;이문철;최종석
    • 한국염색가공학회지
    • /
    • 제25권2호
    • /
    • pp.126-133
    • /
    • 2013
  • Although para-aramid fibers poss higher mechanical properties, they show very low resistance to sunlight exposure. This paper studied on the effect of nano-sol coated $TiO_2$ to improve the photo-stability of p-aramid fibers. Titanium dioxides were prepared by sol-gel method from titanium iso-propoxide at different R ratio ($H_2O$/titanium iso-propoxide). All samples were characterized by XRD, TEM and UV-vis spectrometer. The mechanical properties of p-aramid fabrics by $TiO_2$ nano-sol coating before and after sunlight irradiation were measured with tensile tester. XRD pattern of titanium dioxide particles was observed by mixing phase together with rutile and anatase type. The results showed, after sunlight irradiation, the decreased mechanical properties of the fiber. Furthermore, the sunlight irradiation obviously deteriorated the surface and defected areas of the fiber severely by photo-induced chain scission and end group oxidation in air.

과산화 티타늄 복합체를 이용한 염료감응형 태양전지용 페이스트의 제조 및 열처리 온도에 따른 특성 (The Preparation of Dye-Sensitized Solar Cell Paste Used the Peroxo Titanium Complex and Characteristics by Annealing Temperature)

  • 박현수;주소영;최준필;김우병
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.396-402
    • /
    • 2015
  • The organic binder-free paste for dye-sensitized solar cell (DSSC) has been investigated using peroxo titanium complex. The crystal structure of $TiO_2$ nanoparticles, morphology of $TiO_2$ film and electrical properties are analyzed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Electrochemical Impedance Spectra (EIS), and solar simulator. The synthesized $TiO_2$ nanopowders by the peroxo titanium complex at 150, 300, $400^{\circ}C$, and $450^{\circ}C$ have anatase phase and average crystal sizes are calculated to be 4.2, 13.7, 16.9, and 20.9 nm, respectively. The DSSC prepared by the peroxo titanium complex binder have higher $V_{oc}$ and lower $J_{sc}$ values than that of the organic binder. It can be attributed to improvement of sintering properties of $TCO/TiO_2$ and $TiO_2/TiO_2$ interface and to formation of agglomerate by the nanoparticles. As a result, we have investigated the organic binder-free paste and 3.178% conversion efficiency of the DSSC at $450^{\circ}C$.

전자빔 열처리에 따른 TiO2 박막의 수소가스 검출 특성 연구 (Characterization of Hydrogen Gas Sensitivity of TiO2 Thin Films with Electron Beam Irradiation)

  • 허성보;이학민;정철우;김선광;이영진;김유성;유용주;김대일
    • 열처리공학회지
    • /
    • 제24권1호
    • /
    • pp.31-36
    • /
    • 2011
  • $TiO_2$ films were deposited on a glass substrate with RF magnetron sputtering and then surface of $TiO_2$ films were electron beam irradiated in a vacuum condition to investigate the effect of electron bombardment on the thin film crystallization, surface roughness and gas sensitivity for hydrogen. $TiO_2$ films that electron beam irradiated at 450eV were amorphous phase, while the films irradiated at 900 eV show the anatase (101) diffraction peak in XRD pattern. AFM measurements show that the roughness is depend on the electron irradiation energy. As increase the hydrogen gas concentration and operation temperature, the gas sensitivity of $TiO_2$ and $TiO_2$/ZnO films is increased proportionally and $TiO_2$ films that electron beam irradiated at 900 eV show the higher sensitivity than the films were irradiated at 450eV. From the XRD pattern and AFM observation, it is supposed that the crystallization and rough surface promote the hydrogen gas sensitivity of $TiO_2$ films.