DOI QR코드

DOI QR Code

Preparation of Different Fe Containing TiO2 Photocatalysts and Comparison of Their Photocatalytic Activity

  • Meng, Ze-Da (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Published : 2010.04.27

Abstract

In this paper, Fe-$TiO_2$ and Fe-fullerene/$TiO_2$ composite photocatalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. $TiO_2$, Fe-$TiO_2$ and Fe-fullerene/$TiO_2$ were characterized by scanning electron microscopy (SEM), Transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic oxidation of methylene blue (MB) solution. XRD patterns of the composites showed that the photocatalyst composite contained a typical single and clear anatase phase. The surface properties shown by SEM presented a characterization of the texture on Fe-fullerene/$TiO_2$ composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of O, C and Ti elements. Moreover, peaks of the Fe element were observed in the Fe-$TiO_2$ and Fe-fullerene/$TiO_2$ composites. The degradation of MB solution by UV-light irradiation in the presence of photocatalyst compounds was investigated in complete darkness. The degradation of MB concentration in aqueous solution occurred via three kinds of physical phenomena: quantum efficiency of the fullerene; organo-metallic reaction of the Fe compound; and decomposition of $TiO_2$. The degradation rate of the methylene blue solution increased when using Fe-fullerene/$TiO_2$ compounds.

Keywords

References

  1. E. Piera, M. I. Tejedor, M. E. Zorn and M. A. Anderson,Appl. Catal. B: Environ., 47, 219 (2004). https://doi.org/10.1016/j.apcatb.2003.09.010
  2. Fujishima, K. Hashimoto and T.Watanabe, Inc., May 1999.
  3. C. G. Silva, W. Wang and J. L. Faria, J. Photochem. Photobiol. A: Chem., 181, 314 (2006). https://doi.org/10.1016/j.jphotochem.2005.12.013
  4. V. Shah, P. Verma, P. Stopka, J. Gabriel, P. Baldrian andF. Nerud, Appl. Catal. B: Environ., 46, 287 (2003). https://doi.org/10.1016/S0926-3373(03)00220-0
  5. I. K. Konstantinou and T. A. Albanis, Appl. Catal. B:Environ., 42, 319 (2003). https://doi.org/10.1016/S0926-3373(02)00266-7
  6. T. Sauer, G. Cesconeto Neto and H. J. Jose, J. Photochem. Photobiol. A: Chem., 149, 147 (2002). https://doi.org/10.1016/S1010-6030(02)00015-1
  7. M. R. Hoffmann, S. T. Martin, W. Choi and D. W.Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  8. A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol., C 1, 1 (2000). https://doi.org/10.1016/S1389-5567(00)00002-2
  9. A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev., 95,735 (1995). https://doi.org/10.1021/cr00035a013
  10. H. Tada, M. Yamamoto and S. Ito, Langmuir, 15, 3699(1999). https://doi.org/10.1021/la9816712
  11. M. Gopal, W. J. M. Chan and L. C. De Jonghe, J. Mater. Sci., 32, 6001 (1997). https://doi.org/10.1023/A:1018671212890
  12. M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W.Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  13. C. Minero, G. Marirlla, V. Maurino and E. Pelizzetti,Langmuir, 16, 2632 (2000). https://doi.org/10.1021/la9903301
  14. C. Wang, D. F. Bahnemann and J. K. Dohrmann, Chem. Commun., 16, 1539 (2000).
  15. D. Porath, Y. Levi, M. Tarabiah and O. Millo, Phys. Rev., B. 56, 9829 (1997). https://doi.org/10.1103/PhysRevB.56.9829
  16. V. Brezova, A. Stasko, K. D. Asmus and D. M. Guldi, J. Photochem. Photobiol. A: Chem., 117, 61 (1998). https://doi.org/10.1016/S1010-6030(98)00320-7
  17. A. Sclafani, M. N. Mozzanega and P. Pichat, J. Photochem. Photobiol. A: Chem., 59, 181 (1991). https://doi.org/10.1016/1010-6030(91)87006-H
  18. I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou,S. G. Neophytides and P. Falaras, Appl. Catal. B: Environ.,42, 187 (2003). https://doi.org/10.1016/S0926-3373(02)00233-3
  19. I. M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova,S. G. Neophytides and P. Falaras, J. Catal., 220, 127(2003). https://doi.org/10.1016/S0021-9517(03)00241-0
  20. B. Sun, A. V. Vorontsov and P. G. Smirniotis, Langmuir,19, 3151 (2003). https://doi.org/10.1021/la0264670
  21. V. Vamathevan, R. Amal, D. Beydoun, G. Low and S.McEvoy, J. Photochem. Photobiol. A Chem., 148, 233(2002). https://doi.org/10.1016/S1010-6030(02)00049-7
  22. J. Wang, S. Uma and K. J. Klabunde, Appl. Catal.B:Environ., 48, 151 (2004). https://doi.org/10.1016/j.apcatb.2003.10.006
  23. B. O’Regan and D. T. Schwartz, J. Appl. Phys., 80, 4749(1996). https://doi.org/10.1063/1.363412
  24. C. Wang, C. Bottcher, D. W. Bahnemann and J. K.Dohrmann, J. Mater. Chem., 13, 2322 (2003). https://doi.org/10.1039/b303716a
  25. S. Nahar, K. Hasegawa and S. Kagaya, Chemosphere,65, 1976 (2006). https://doi.org/10.1016/j.chemosphere.2006.07.002
  26. T. Hasobe, S. Hattori, P. V. Kanmat and S. Fukuzumi, Tetrahedron., 62, 1937 (2006). https://doi.org/10.1016/j.tet.2005.05.113
  27. B. E. Lawrence, Carbon, 35, 437 (1997). https://doi.org/10.1016/S0008-6223(97)89618-2
  28. T. Inoue, Y. Kubozono, K. Hiraoka, K. Mimura, H. Maeda,S. Kashino, S. Emura, T. Uruga and Y. Nakata, J. Synchrotron Radiat., 6, 779 (1999). https://doi.org/10.1107/S0909049598016288
  29. C. D. Stevenson, J. R. Noyes and R. Reiter, J. Am. Chem. Soc., 122, 12905 (2000). https://doi.org/10.1021/ja003100d
  30. W. C. Oh, J. G. Kim, H. Kim, M. L. Chen, K. Zhang, Z.D. Meng and F. J. Zhang , Kor. J. Mater. Res., 19(11),569 (2009). https://doi.org/10.3740/MRSK.2009.19.11.569
  31. F. J. Zhang, M. L. Chen and W. C. Oh, Kor. J. Mater. Res., 18(11), 583 (2008). https://doi.org/10.3740/MRSK.2008.18.11.583
  32. K. Zhang, Z. D. Meng and W. C. Oh, Kor. J. Mater. Res., 20(3), 117 (2010). https://doi.org/10.3740/MRSK.2010.20.3.117
  33. T. Akiyama, A. Miyazaki, M. Sutoh, I. Ichinose, T.Kunitake and S. Yamada, Colloids Surf., 169, 137 (2000). https://doi.org/10.1016/S0927-7757(00)00426-X
  34. T. Hasobe, S. Hattori, P. V. Kanmat and S. Fukuzumi,Tetrahedron., 62, 1937 (2006). https://doi.org/10.1016/j.tet.2005.05.113
  35. B. E. Lawrence, Carbon, 35, 437 (1997). https://doi.org/10.1016/S0008-6223(97)89618-2
  36. B. Sun, M. Li, H. Luo, Z. Shi and Z. Gu, Electrochim. Acta, 47, 3545 (2002). https://doi.org/10.1016/S0013-4686(02)00355-9
  37. F. Langa, P. Cruz, J. L. Delgado, E. Espildora, M. J.Gomez-Escalonilla and A. Hoz, J. Mater. Chem., 12,2130 (2002). https://doi.org/10.1039/b203112b
  38. W. C. Oh, A. R. Jung and W. B. Ko, Mater. Sci. Eng.: C., 29, 1338 (2009). https://doi.org/10.1016/j.msec.2008.10.034
  39. M. Drees, K. Premaratne, W. Graupner and J. R. Heflin,Appl. Phys. Lett., 81, 4607 (2002). https://doi.org/10.1063/1.1522830
  40. A. Smontara, A. M. Tonejc, S. Gradecak, A. Tonejc, A.Bilusicand and J. C. Lasjaunias, Mater. Sci. Eng.: C., 19,21 (2002). https://doi.org/10.1016/S0928-4931(01)00427-1
  41. F. A. Khalid, O. Beffort, U. E. Klotz, B. A. Keller, P.Gasser and S. Vaucher, Acta Mater., 51, 4575 (2003). https://doi.org/10.1016/S1359-6454(03)00294-5
  42. Z. N. Gu, L. Zhang, John L. Margrave, Valery A.Davydov, A. V. Rakhmanina, V. Agafonov and V. N.Khabashesku, Carbon, 43, 2989 (2005). https://doi.org/10.1016/j.carbon.2005.06.012
  43. H. Wingkei, C. Y. Jimmy and L. Shuncheng, J. Solid State Chem., 179, 1171 (2006). https://doi.org/10.1016/j.jssc.2006.01.009
  44. S. Y. Mak and D. H. Chen, Dyes Pigments., 61, 93 (2004). https://doi.org/10.1016/j.dyepig.2003.10.008
  45. J. C. Colmenares, M. A. Aramend, A. Marinas, J. M.Marinas and F. J. Urbano, Appl. Catal. A: Gen., 306, 120(2006). https://doi.org/10.1016/j.apcata.2006.03.046
  46. R. J. Tayade, R. G. Kulkarni and R.V. Jasra, Ind. Eng. Chem. Res., 45, 5231 (2006). https://doi.org/10.1021/ie051362o
  47. C. Jianhua, Y. Maosheng and W. Xiaolin, J. Nanopart. Res., 10, 163 (2008).
  48. W. Choi, A. Termin and M. R. Hoffmann, J. Phys. Chem.,98, 13669 (1994). https://doi.org/10.1021/j100102a038
  49. W. C. Oh and W. B. Ko, J. Ind. Eng. Chem., 15, 791(2009). https://doi.org/10.1016/j.jiec.2009.09.001

Cited by

  1. Effect of Pt treated fullerene/TiO2 on the photocatalytic degradation of MO under visible light vol.21, pp.21, 2011, https://doi.org/10.1039/c1jm10301f
  2. Composite Catalysts on the Photocatalytic Degradation of MO Under Visible Light vol.48, pp.6, 2011, https://doi.org/10.4191/kcers.2011.48.6.571
  3. Supported on AC Under Visible Light Irradiation vol.22, pp.2, 2012, https://doi.org/10.3740/MRSK.2012.22.2.91
  4. Synthesis of fullerene modified with Ag2S with high photocatalytic activity under visible light vol.22, pp.31, 2012, https://doi.org/10.1039/c2jm32344c