DOI QR코드

DOI QR Code

The Preparation of Dye-Sensitized Solar Cell Paste Used the Peroxo Titanium Complex and Characteristics by Annealing Temperature

과산화 티타늄 복합체를 이용한 염료감응형 태양전지용 페이스트의 제조 및 열처리 온도에 따른 특성

  • 박현수 (단국대학교 에너지공학과) ;
  • 주소영 (단국대학교 에너지공학과) ;
  • 최준필 (한국기계연구원 부설 재료연구소) ;
  • 김우병 (단국대학교 에너지공학과)
  • Received : 2015.12.15
  • Accepted : 2015.12.18
  • Published : 2015.12.28

Abstract

The organic binder-free paste for dye-sensitized solar cell (DSSC) has been investigated using peroxo titanium complex. The crystal structure of $TiO_2$ nanoparticles, morphology of $TiO_2$ film and electrical properties are analyzed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Electrochemical Impedance Spectra (EIS), and solar simulator. The synthesized $TiO_2$ nanopowders by the peroxo titanium complex at 150, 300, $400^{\circ}C$, and $450^{\circ}C$ have anatase phase and average crystal sizes are calculated to be 4.2, 13.7, 16.9, and 20.9 nm, respectively. The DSSC prepared by the peroxo titanium complex binder have higher $V_{oc}$ and lower $J_{sc}$ values than that of the organic binder. It can be attributed to improvement of sintering properties of $TCO/TiO_2$ and $TiO_2/TiO_2$ interface and to formation of agglomerate by the nanoparticles. As a result, we have investigated the organic binder-free paste and 3.178% conversion efficiency of the DSSC at $450^{\circ}C$.

Keywords

References

  1. B. O'Regan and M. Gratzel: Nature., 353 (1991) 737. https://doi.org/10.1038/353737a0
  2. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Gratzel: Science., 334 (2011) 629. https://doi.org/10.1126/science.1209688
  3. N. Robertson: Chem. Int. Ed., 45, (2006) 2338. https://doi.org/10.1002/anie.200503083
  4. H. Tian and F. Meng: Opt. Sci. Eng., 14 (2006) 313.
  5. M. Gratzel: prog Photovoltaics. Res. Appl., 14 (2006) 589. https://doi.org/10.1002/pip.683
  6. S. E. Gledhill and B. Scott: J. Mater. Res., 20 (2005) 3167. https://doi.org/10.1557/jmr.2005.0407
  7. M. Gorlov and L. Kloo: Dalton Trans., (2008) 2655.
  8. V. Thavasi and R. Jose: Mater. Sci. Eng. R., 63 (2009) 81. https://doi.org/10.1016/j.mser.2008.09.001
  9. M. K. Nazeeruddin, A. Kay and M. Gratzel: J. Am. Chem. Soc., 115 (1993) 6382. https://doi.org/10.1021/ja00067a063
  10. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin and M. Gratzel: Thin Solid Films., 516 (2008) 4613. https://doi.org/10.1016/j.tsf.2007.05.090
  11. H. J. Koo, J. Park, B. Yoo, K. Kim and N. G. Park: Inorg. Chim. Acta., 361 (2008) 677. https://doi.org/10.1016/j.ica.2007.05.017
  12. G. O. Kim, K. W. Kim, K. K. Cho and K. S. Ryu: Appl. Chem. Eng., 22 (2011) 190 (Korean).
  13. A. K. Chandiran, F. Sauvage, M. Casas-Cabanas, P. Comte, S. Zakkeruddin and M. Gratzel: J. Phys. Chem. C., 114 (2010) 15849. https://doi.org/10.1021/jp106058c
  14. A. K. Chandiran, F. Sauvage, L. Etgar and M. Gratzel: J. Phys. Chem. C., 115 (2011) 9232. https://doi.org/10.1021/jp1121068
  15. K. M. Lee, V. Suryanarayanan and K. C. Ho: Sol. Energy. Mater. Sol. Cells., 91 (2007) 1018.
  16. M. Iwasaki, C. W. Lee, T. H. Kim, W. K. Park: J. Ceram. Soc. Jpn., 116 (2008) 153. https://doi.org/10.2109/jcersj2.116.153
  17. D. Zhang, T. Yoshida, T. Oekermann, K. Furuta and H. Minoura: Adv. Funct. Mater., 16 (2006) 1228. https://doi.org/10.1002/adfm.200500700
  18. K. S. Hwang and K. R. Ha: Appl. Chem. Eng., 21 (2010) 405.
  19. N. Fu, C. Huang, Y. Liu, X. Li, W. Lu, L. Zhou, F. Peng, Y. Liu and H. Huang: ACS Appl. Mater. Interfaces., 7 (2015) 19431. https://doi.org/10.1021/acsami.5b05672
  20. Y. Kijitori, M. Ikegami and T. Miyasaka: Chem. Lett., 36 (2007) 190. https://doi.org/10.1246/cl.2007.190
  21. A. K. Chandiran, A. Yella , M. Stefik, L.-P. Heiniger, P. Comte, M. K. Nazeeruddin and M. Gratzel: ACS Appl. Mater. Interfaces., 5 (2013) 3487. https://doi.org/10.1021/am400866s
  22. Y. Li, K. Yoo, D. K. Lee, J. Y. Kim, H. Kim, B. Kim and M. J. Ko: Nanoscale., 5 (2013) 4711. https://doi.org/10.1039/c2nr33352j
  23. Y. Li, W. Lee, D. K. Lee, K. Kim and N. G. Park: Appl. Phys. Lett., 98 (2011) 103301. https://doi.org/10.1063/1.3562030
  24. H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon and Y. B. Cheng: J. Photochem. Photobiol. A: Chem., 213 (2010) 30. https://doi.org/10.1016/j.jphotochem.2010.04.016
  25. J. livage, M. Henry and C. Sanchez: Prog. Solid State Chem., 18 (1988) 259. https://doi.org/10.1016/0079-6786(88)90005-2
  26. M. Tada, K. Tomita, V. Petrykin and M. Kakihana: Solid State Ionics., 151 (2002) 293. https://doi.org/10.1016/S0167-2738(02)00726-9
  27. P. Tengvell, H. Elwing and I. Lundstrom: J. Colloid Interface Sci., 130 (1989) 405. https://doi.org/10.1016/0021-9797(89)90117-3
  28. G. P. Kalaignan, M. S. Kang and Y. S. Kang: Solid State Ionics., 177 (2006) 1091. https://doi.org/10.1016/j.ssi.2006.03.013

Cited by

  1. Study on thermal behavior of Ammonium Hexafluofide Titanate for Synthesis of TiO2 Powders vol.23, pp.5, 2016, https://doi.org/10.4150/KPMI.2016.23.5.353