• Title/Summary/Keyword: analytics

Search Result 738, Processing Time 0.02 seconds

Information Requirements for Model-based Monitoring of Construction via Emerging Big Visual Data and BIM

  • Han, Kevin K.;Golparvar-Fard, Mani
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.317-320
    • /
    • 2015
  • Documenting work-in-progress on construction sites using images captured with smartphones, point-and-shoot cameras, and Unmanned Aerial Vehicles (UAVs) has gained significant popularity among practitioners. The spatial and temporal density of these large-scale site image collections and the availability of 4D Building Information Models (BIM) provide a unique opportunity to develop BIM-driven visual analytics that can quickly and easily detect and visualize construction progress deviations. Building on these emerging sources of information this paper presents a pipeline for model-driven visual analytics of construction progress. It particularly focuses on the following key steps: 1) capturing, transferring, and storing images; 2) BIM-driven analytics to identify performance deviations, and 3) visualizations that enable root-cause assessments on performance deviations. The information requirements, and the challenges and opportunities for improvements in data collection, plan preparations, progress deviation analysis particularly under limited visibility, and transforming identified deviations into performance metrics to enable root-cause assessments are discussed using several real world case studies.

  • PDF

Influence of Business Analytics Usage on Operational Efficiency of Information Technology Infrastructure Management

  • Elangovan N;Ruchika Gupta;Sundaravel, E
    • Asia pacific journal of information systems
    • /
    • v.32 no.1
    • /
    • pp.70-91
    • /
    • 2022
  • Organizations today depend and thrive on timely, accurate and strategically relevant information. Business analytics (BA) holds the key to many of these issues. This paper validates a model on how the usage of BA leads to operational efficiency. We identified the factors of basic analytical usage from the Business Capacity Maturity Model (BCMM). The scope of the study is restricted to the Information Technology Infrastructure and Application management domain. A survey was conducted among the managers of the IT companies in Bengaluru, India. The results showed a significant influence of data-oriented culture and BA tools and infrastructure on BA usage. We found a significant influence of BA usage and pervasive use on operational efficiency. The speed to insight is still not practised in organizations. The awareness level of analytical skills in organizations is very low.

The Design of Dashboard for Instructor Feedback Support Based on Learning Analytics (학습분석 기반 교수자 피드백 제공을 위한 대시보드 설계)

  • Lim, SungTae;Kim, EunHee
    • The Journal of Korean Association of Computer Education
    • /
    • v.20 no.6
    • /
    • pp.1-15
    • /
    • 2017
  • The purpose of this study is to design a LMS(Learning Management System) dashboard for instructor feedback support based on learning analytics and to apply a LMS dashboard incorporating such taxonomy which allows an instructor to give a student personalized feedback according to the class content and a student's traits. In the dashboard design phase, usable instructional data were selected from LMS based on feedback taxonomy in terms of learning analytics. Two validity tests were conducted with 8 instructional technologists over 8 years of experience, and were revised accordingly. The final dashboard screen has three parts: A comprehensive analysis screen to provide appropriate feedback based on instructor feedback taxonomy analysis, a summary screen for learner analysis, and a recommended feedback guide screen. Detailed analysis information are provided through other dashboards that are displayed in eight screens: login analysis, learning information confirmation analysis, teaching materials learning analysis, assignment/tests, and posts analysis. All of these dashboards were represented by analysis information and data based on learner analytics through visualization methods including graphs and tables. The implications of educational utilization of the dashboard for instructor feedback support based on learning analytics and the future researches were suggested based on these results.

Big Data in Smart Tourism: A Perspective Article

  • Park, Sangwon
    • Journal of Smart Tourism
    • /
    • v.1 no.3
    • /
    • pp.3-5
    • /
    • 2021
  • The advancement of Information Communication Technology has provided tourism researchers with a golden opportunity to access big data, which plays a critical role in smart tourism. Recognizing the current issue, this paper discusses the evolution of the literature on tourism big data focusing on conceptual understanding of and types of big data, and insights from big data analytics. Indeed, this article provides important research agenda for future tourism researchers who would like to conduct academic research about big data and smart tourism.

The Analysis of the APT Prelude by Big Data Analytics (빅데이터 분석을 통한 APT공격 전조 현상 분석)

  • Choi, Chan-young;Park, Dea-woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1129-1135
    • /
    • 2016
  • The NH-NongHyup network and servers were paralyzed in 2011, in the 2013 3.20 cyber attack happened and classified documents of Korea Hydro & Nuclear Power Co. Ltd were leaked on december in 2015. All of them were conducted by a foreign country. These attacks were planned for a long time compared to the script kids attacks and the techniques used were very complex and sophisticated. However, no successful solution has been implemented to defend an APT attacks(Advanced Persistent Threat Attacks) thus far. We will use big data analytics to analyze whether or not APT attacks has occurred. This research is based on the data collected through ISAC monitoring among 3 hierarchical Korean Defense System. First, we will introduce related research about big data analytics and machine learning. Then, we design two big data analytics models to detect an APT attacks. Lastly, we will present an effective response method to address a detected APT attacks.

Visual Analytics for Abnormal Event detection using Seasonal-Trend Decomposition and Serial-Correlation (Seasonal-Trend Decomposition과 시계열 상관관계 분석을 통한 비정상 이벤트 탐지 시각적 분석 시스템)

  • Yeon, Hanbyul;Jang, Yun
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1066-1074
    • /
    • 2014
  • In this paper, we present a visual analytics system that uses serial-correlation to detect an abnormal event in spatio-temporal data. Our approach extracts the topic-model from spatio-temporal tweets and then filters the abnormal event candidates using a seasonal-trend decomposition procedure based on Loess smoothing (STL). We re-extract the topic from the candidates, and then, we apply STL to the second candidate. Finally, we analyze the serial-correlation between the first candidates and the second candidate in order to detect abnormal events. We have used a visual analytic approach to detect the abnormal events, and therefore, the users can intuitively analyze abnormal event trends and cyclical patterns. For the case study, we have verified our visual analytics system by analyzing information related to two different events: the 'Gyeongju Mauna Resort collapse' and the 'Jindo-ferry sinking'.

Visual Analytics using Topic Composition for Predicting Event Flow (토픽의 조합으로 이벤트 흐름을 예측하기 위한 시각적 분석 시스템)

  • Yeon, Hanbyul;Kim, Seokyeon;Jang, Yun
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.12
    • /
    • pp.768-773
    • /
    • 2015
  • Emergence events are the cause of much economic damage. In order to minimize the damage that these events cause, it must be possible to predict what will happen in the future. Accordingly, many researchers have focused on real-time monitoring, detecting events, and investigating events. In addition, there have also been many studies on predictive analysis for forecasting of future trends. However, most studies provide future tendency per event without contextual compositive analysis. In this paper, we present a predictive visual analytics system using topic composition to provide future trends per event. We first extract abnormal topics from social media data to find interesting and unexpected events. We then search for similar emergence patterns in the past. Relevant topics in the past are provided by news media data. Finally, the user combines the relevant topics and a new context is created for contextual prediction. In a case study, we demonstrate our visual analytics system with two different cases and validate our system with possible predictive story lines.

Research Capability Enhancement System Based on Prescriptive Analytics (지시적 분석 기반 역량 강화 시스템)

  • Gim, Jangwon;Jung, Hanmin;Jeong, Do-Heon;Song, Sa-Kwang;Hwang, Myunggwon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.46-51
    • /
    • 2015
  • The explosive growth of data and the rapidly changing technical social evolution new analysis paradigm for predicting and reacting the future the past and present ig data. Prescriptive analysis has a fundamental difference because can support specific behaviors and results according to user's goals with defin researchers establish judgments and activities achiev the goals. However research methods not widely implemented and even the terminology, Prescriptive analysis, is still unfamiliar. This paper thus propose an infrastructure in the prescriptive analysis field with key considerations for enhancing capability of researchers through a case study based on InSciTe Advisory developed with scientific big data. InSciTe Advisory system s developed in 2013, and offers a prescriptive analytics report which contains various As-Is analysis results and To-Be analysis results 5W1H methodology. InSciTe Advisory therefore shows possibility strategy aims to reach a target role model group. Through the availability and reliability of the measurement model the evaluation results obtained relative advantage of 118.8% compared to Elsevier SciVal.

Visual Analytics Approach for Performance Improvement of predicting youth physical growth model (청소년 신체 성장 예측 모델의 성능 향상을 위한 시각적 분석 방법)

  • Yeon, Hanbyul;Pi, Mingyu;Seo, Seongbum;Ha, Seoho;Oh, Byungjun;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.4
    • /
    • pp.21-29
    • /
    • 2017
  • Previous visual analytics researches has focused on reducing the uncertainty of predicted results using a variety of interactive visual data exploration techniques. The main purpose of the interactive search technique is to reduce the quality difference of the predicted results according to the level of the decision maker by understanding the relationship between the variables and choosing the appropriate model to predict the unknown variables. However, it is difficult to create a predictive model which forecast time series data whose overall trends is unknown such as youth physical growth data. In this paper, we pro pose a novel predictive analysis technique to forecast the physical growth value in small pieces of time series data with un certain trends. This model estimates the distribution of data at a particular point in time. We also propose a visual analytics system that minimizes the possible uncertainties in predictive modeling process.

Developing a Prototype of Learning Epistemic Frame using Computer based Learning System: Learning Analytics (인식론적 프레임 학습을 위한 컴퓨터 기반 교육프로그램 프로토타입 개발: 학습분석 중심으로)

  • Choi, Younyoung;Seo, Donggi
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.3
    • /
    • pp.23-29
    • /
    • 2018
  • There is a growing interest in computer based learning system that can learn a new concept of epistemic frames in response to the demands of $21^{st}$ century Skills. However, there is little research on the theoretical models for the epistemic frames applicable in the changing educational environment and the measurement theories (Psychometric theory, Learning Analytics) that can be evaluated. Therefore, in this study, we propose the core elements of the learning system prototype that can educate the epistemic frames in the practical community. Furthermore, this study explores and suggests an appropriate psychometric measurement theory (learning analytics) that allows us to measure, infer, and evaluate a learner.