• Title/Summary/Keyword: analytical methods

Search Result 3,062, Processing Time 0.027 seconds

An Experimental Estimation of Two Detection Limit Models

  • Ma Chang-Jin;Tohno Susumu;Kasahara Mikio;Kang Gong-Unn
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E1
    • /
    • pp.29-33
    • /
    • 2004
  • In environmental studies, decisions are often made on the analytical data indicating certain contaminants as being 'detected' or 'non-detectible.' Since detection limits are analytical method specific, one has to first review the concepts and definitions associated with analytical method systems and specifications. In this study, the experimental analytical values for a series of low level standards (for an ionic species) were used as an example to estimate two different method detection limits (MDL). The scores of EPA's MDL and Pallesen's MDL determined by real analytical scores are 0.0575 and 0.0561 mg/L, respectively for our nitrate data. These scores determined by two different MDL models are roughly similar, while there are apparent differences between two methods with respect to statistical and systematical procedure. However, determination of MDL for one's laboratory provides some practical applications which helps to assure one's regulating authorities that one's measured scores are accurate.

Laterally Loaded Behavior of Short Drilled Shaft Foundation for Single-Pole Structures (단주 구조 송전탑 기초의 횡방향 거동에 관한 연구)

  • Choi, Ho-Young;Kim, Yeong-Hun;Lee, Seung-Rae;Kim, Dae-Hak;Kim, Dae-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1106-1116
    • /
    • 2008
  • Single-pole transmission structures which are supported by drilled shaft foundations are usually subjected to large overturning moments with modest vertical and lateral loads. To analyze the behavior of the drilled shaft under such loading conditions, an analytical model was developed based on beam-column and subgrade reaction methods. Field model tests were performed to calibrate the developed analytical model in which additional subgrade spring models were adopted. The field test results estimated from the calibrated analytical model were compared with those calculated by one spring model and other commercial program. According to the comparison study, the developed analytical model was proven to be a useful tool to analyze the laterally loaded behavior of foundations for single-pole structures.

  • PDF

Analytical solution of a contact problem and comparison with the results from FEM

  • Oner, Erdal;Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.607-622
    • /
    • 2015
  • This paper presents a comparative study of analytical method and finite element method (FEM) for analysis of a continuous contact problem. The problem consists of two elastic layers loaded by means of a rigid circular punch and resting on semi-infinite plane. It is assumed that all surfaces are frictionless and only compressive normal tractions can be transmitted through the contact areas. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. Then, finite element model of the problem is constituted using ANSYS software and the two dimensional analysis of the problem is carried out. The contact stresses under rigid circular punch, the contact areas, normal stresses along the axis of symmetry are obtained for both solutions. The results show that contact stresses and the normal stresses obtained from finite element method (FEM) provide boundary conditions of the problem as well as analytical results. Also, the contact areas obtained from finite element method are very close to results obtained from analytical method; disagree by 0.03-1.61%. Finally, it can be said that there is a good agreement between two methods.

Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach

  • Singh, Agyapal;Kumari, Poonam
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.55-89
    • /
    • 2020
  • For the first time, an accurate analytical solution, based on coupled three-dimensional (3D) piezoelasticity equations, is presented for free vibration analysis of the angle-ply elastic and piezoelectric flat laminated panels under arbitrary boundary conditions. The present analytical solution is applicable to composite, sandwich and hybrid panels having arbitrary angle-ply lay-up, material properties, and boundary conditions. The modified Hamiltons principle approach has been applied to derive the weak form of governing equations where stresses, displacements, electric potential, and electric displacement field variables are considered as primary variables. Thereafter, multi-term multi-field extended Kantorovich approach (MMEKM) is employed to transform the governing equation into two sets of algebraic-ordinary differential equations (ODEs), one along in-plane (x) and other along the thickness (z) direction, respectively. These ODEs are solved in closed-form manner, which ensures the same order of accuracy for all the variables (stresses, displacements, and electric variables) by satisfying the boundary and continuity equations in exact manners. A robust algorithm is developed for extracting the natural frequencies and mode shapes. The numerical results are reported for various configurations such as elastic panels, sandwich panels and piezoelectric panels under different sets of boundary conditions. The effect of ply-angle and thickness to span ratio (s) on the dynamic behavior of the panels are also investigated. The presented 3D analytical solution will be helpful in the assessment of various 1D theories and numerical methods.

An analytical solution for finitely long hollow cylinder subjected to torsional impact

  • Wang, X.;Wang, X.Y.;Hao, W.H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.281-295
    • /
    • 2005
  • An analytical method is presented to solve the elastodynamic problem of finitely long hollow cylinder subjected to torsional impact often occurs in engineering mechanics. The analytical solution is composed of a solution of quasi-static equation satisfied with the non-homogeneous boundary condition and a solution of dynamic equation satisfied with homogeneous boundary condition. The quasi-static solution is obtained directly by solving the quasi-static equation satisfied with the non-homogeneous boundary condition. The solution of the non-homogeneous dynamic equation is obtained by means of finite Hankel transform on the radial variable, r, Laplace transform on time variable, t, and finite Fourier transform on axial variable, z. Thus, the solution for finitely long, hollow cylinder subjected to torsion impact is obtained. In the calculating examples, the response histories and distributions of shear stress in the finitely long hollow cylinder subjected to an exponential decay torsion load are obtained, and the results have been analyzed and discussed. Finally, a dynamic finite element for the same problem is carried out by using ABAQUS finite element analysis. Comparing the analytical solution with the finite element solution, it can be found that two kinds of results obtained by means of two different methods agree well. Therefore, it is further concluded that the analytical method and computing process presented in the paper are effective and accurate.

Analytical Solution for Long Waves on Axis-Symmetric Topographies (축 대칭 지형 위를 전파하는 장파의 해석해)

  • Jung, Tae-Hwa;Lee, Changhoon;Cho, Yong-Sik;Lee, Jin-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.413-419
    • /
    • 2008
  • In this study, we develop analytical solutions for long waves propagating over several types of axis-symmetric topographies where the water depth varies in an arbitrary power of radial distance. The first type is a cylindrical island mounted on a shoal. The second type is a circular island. To get the solution, the methods of separation of variables, Taylor series expansion and Frobenius series are used. Developed analytical solutions are validated by comparing with previously developed analytical solutions. We also investigate various cases with different incident wave periods, radii of the shoal, and the powers of radial distance.

Method for simultaneous analysis of bisphenols and phthalates in corn oil via liquid chromatography-tandem mass spectrometry

  • Min-Chul Shin;Hee-Jin Jeong;Seoung-Min Lee;Jong-Su Seo;Jong-Hwan Kim
    • Analytical Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.271-279
    • /
    • 2024
  • Bisphenols and phthalates are endocrine-disrupting chemicals that are commonly used in packaging and as plasticizers. However, they pose health risks through ingestion, inhalation, and dermal contact. Accurate analysis of these pollutants is challenging owing to their low concentration and their presence in complex oil matrices. Therefore, they require efficient extraction and detection methods. In this study, an analytical method for the simultaneous quantification of bisphenols and phthalates in corn oil is developed. The dynamic multiple reaction monitoring mode of liquid chromatography-tandem mass spectrometry is used according to the different polarities of bisphenols and phthalates. The method is validated by assessing system suitability, linearity, accuracy, precision, homogeneity, and stability. The determination coefficients are higher than 0.99, which is acceptable. The percentage recovery and coefficient of variation of the accuracy and precision confirm that this analytical method is capable of simultaneously quantifying bisphenols and phthalates in corn oil. The bisphenols and phthalates in the formulations and pretreatment samples are stable for 7 d at room temperature and 24 h in an auto-sampler. Therefore, this validated analytical method is effective for the simultaneous quantification of bisphenols and phthalates in oils.

Evaluation of CODsed Analytical Methods for Domestic Freshwater Sediments: Comparison of Reliability and Correlationship between CODMn and CODCr Methods (국내 담수퇴적물의 CODsed 분석방법 평가: CODMn법과 CODCr법의 신뢰성 및 상관성 비교)

  • Choi, Jiyeon;Oh, Sanghwa;Park, Jeong-Hun;Hwang, Inseong;Oh, Jeong-Eun;Hur, Jin;Shin, Hyun-Sang;Huh, In-Ae;Kim, Young-Hoon;Shin, Won Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.181-192
    • /
    • 2014
  • In Korea, the chemical oxygen demand($COD_{sed}$) in freshwater sediments has been measured by the potassium permanganate method used for marine sediment because of the absence of authorized analytical method. However, this method has not been fully verified for the freshwater sediment. Therefore, the use or modification of the potassium permanganate method or the development of the new $COD_{sed}$ analytical method may be necessary. In this study, two modified $COD_{sed}$ analytical methods such as the modified potassium permanganate method for $COD_{Mn}$ and the modified closed reflux method using potassium dichromate for $COD_{Cr}$ were compared. In the preliminary experiment to estimate the capability of the two oxidants for glucose oxidation, $COD_{Mn}$ and $COD_{Cr}$ were about 70% and 100% of theoretical oxygen demand(ThOD), respectively, indicating that $COD_{Cr}$ was very close to the ThOD. The effective titration ranges in $COD_{Mn}$ and $COD_{Cr}$ were 3.2 to 7.5 mL and 1.0 to 5.0 mL for glucose, 4.3 to 7.5 mL and 1.4 to 4.3 mL for lake sediment, and 2.5 to 5.8 mL and 3.6 to 4.5 mL for river sediment, respectively, within 10% errors. For estimating $COD_{sed}$ recovery(%) in glucose-spiked sediment after aging for 1 day, the mass balances of the $COD_{Mn}$ and $COD_{Cr}$ among glucose, sediments and glucose-spiked sediments were compared. The recoveries of $COD_{Mn}$ and $COD_{Cr}$ were 78% and 78% in glucose-spiked river sediments, 91% and 86% in glucose-spiked lake sediments, 97% and 104% in glucose-spiked sand, and 134% and 107% in glucose-spiked clay, respectively. In conclusion, both methods have high confidence levels in terms of analytical methodology but show significant different $COD_{sed}$ concentrations due to difference in the oxidation powers of the oxidants.

A review of analytical method for volatile fatty acids as designated offensive odorants in Korea (악취성 유기지방산 성분의 분석기술)

  • Ahn, Ji-Won;Kim, Yong-Hyun;Kim, Ki-Hyun;Song, Hee-Nam
    • Analytical Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.91-101
    • /
    • 2012
  • A list of volatile fatty acids (VFA) including propionic acid, butyric acid, isovaleric acid, valeric acid, etc. is well known for offensive odorants. The analysis of odorant VFA is a highly delicate task due to high reactivity and unstable recovery rate. At present, analytical methods of VFA are recommended to include alkali impregnation filter method and alkali absorption method by the malodor prevention law of the Korea Ministry of Environment (KMOE). In this review, a survey has been made to explore various approaches available for the analysis of VFA to include both official methods of the KMOE and others. In light of the unreliability of those established analytical methods, it is highly desirable to develop some substituting methods for VFA. Among such options, one may consider such option as sorbent tube (ST) sampling and cryogenic trapping-thermal desorption technique. Moreover, procedures used for standard preparation, sampling steps, and instrumental detection stage are also evaluated. Application of container sampling (like Tedlar bag) is however not recommendable due to significant (sorptive) loss in sampling and in storage stage. In the detection stage, the use of GC/MS is recommendable to replace GC/FID due to the presence of diverse interfering substances. Thus, it is essential to properly establish the basic quality assurance (QA) for VFA analysis in air.

Sequencing Methods to Study the Microbiome with Antibiotic Resistance Genes in Patients with Pulmonary Infections

  • Tingyan Dong;Yongsi Wang;Chunxia Qi;Wentao Fan;Junting Xie;Haitao Chen;Hao Zhou;Xiaodong Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1617-1626
    • /
    • 2024
  • Various antibiotic-resistant bacteria (ARB) are known to induce repeated pulmonary infections and increase morbidity and mortality. A thorough knowledge of antibiotic resistance is imperative for clinical practice to treat resistant pulmonary infections. In this study, we used a reads-based method and an assembly-based method according to the metagenomic next-generation sequencing (mNGS) data to reveal the spectra of ARB and corresponding antibiotic resistance genes (ARGs) in samples from patients with pulmonary infections. A total of 151 clinical samples from 144 patients with pulmonary infections were collected for retrospective analysis. The ARB and ARGs detection performance was compared by the reads-based method and assembly-based method with the culture method and antibiotic susceptibility testing (AST), respectively. In addition, ARGs and the attribution relationship of common ARB were analyzed by the two methods. The comparison results showed that the assembly-based method could assist in determining pathogens detected by the reads-based method as true ARB and improve the predictive capabilities (46% > 13%). ARG-ARB network analysis revealed that assembly-based method could promote determining clear ARG-bacteria attribution and 101 ARGs were detected both in two methods. 25 ARB were obtained by both methods, of which the most predominant ARB and its ARGs in the samples of pulmonary infections were Acinetobacter baumannii (ade), Pseudomonas aeruginosa (mex), Klebsiella pneumoniae (emr), and Stenotrophomonas maltophilia (sme). Collectively, our findings demonstrated that the assembly-based method could be a supplement to the reads-based method and uncovered pulmonary infection-associated ARB and ARGs as potential antibiotic treatment targets.