• Title/Summary/Keyword: analytical methods

Search Result 3,048, Processing Time 0.025 seconds

Glycoscience aids in biomarker discovery

  • Hua, Serenus;An, Hyun-Joo
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.323-330
    • /
    • 2012
  • The glycome consists of all glycans (or carbohydrates) within a biological system, and modulates a wide range of important biological activities, from protein folding to cellular communications. The mining of the glycome for disease markers represents a new paradigm for biomarker discovery; however, this effort is severely complicated by the vast complexity and structural diversity of glycans. This review summarizes recent developments in analytical technology and methodology as applied to the fields of glycomics and glycoproteomics. Mass spectrometric strategies for glycan compositional profiling are described, as are potential refinements which allow structure-specific profiling. Analytical methods that can discern protein glycosylation at a specific site of modification are also discussed in detail. Biomarker discovery applications are shown at each level of analysis, highlighting the key role that glycoscience can play in helping scientists understand disease biology.

An Efficient Inelastic Analysis of a Moment Frame Steel Structure with Reduced Beam Section (Reduced Beam Section을 가진 철골모멘트 골조의 효율적인 비탄성 해석)

  • 조소훈;박찬헌;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.503-510
    • /
    • 2004
  • One of the methods improving the seismic behavior of a structure is the frame with reduced beam section (RBS) which cuts a segment of flanges of the beam near the beam-to-column connection so that the section with reduced flanges has smaller flexural strength than the beam end. It is difficult to analyze the RBS frame because RBS portion has circular-cut type flange. And inelastic response of the steel frame with the RBS is very sensitive to the RBS model. In this paper, the analytical models of RBS portion are investigated and the results of the inelastic analysis for RBS analytical models are compared and then the analytical model for RBS is determined based on the results of inelastic analysis. Inelastic behavior of the RBS frame and its dynamic characteristics are investigated for selected analytical model of RBS.

  • PDF

An Experimental and Analytical Study on Axial Force-Moment Capacity of High-Strength Concrete Column under Eccentric Loads (편심을 받은 고강도 콘크리트 기둥의 출력-모멘트 강도에 관한 실험 및 해석적 연구)

  • 최창익;손혁수;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.468-474
    • /
    • 1997
  • High strength concrete is a more effective material for columns subject to axial force and moment than for other structural elements. The purpose of this study is to review strength calculation methods for high strength concrete columus by comparison of analytical values and experimental results. The variables of column test under eccentric loading were concrete compressive strength, longitudinal steel ratio, and eccentricity of load. The tied column sections of 120×120mm and 210×210mm were tested and the eccentricity of load varied in the range from 0.16 times to 0.54 times the column depth. The analytical results using the stress-strain relationship to 0.54 times the column depth. The analytical results using the stress-strain relationship as well as the ACI's rectangular block, Zia's modified block, and the trapezoidal block are compared with experimentally obtained data, and discussed in this paper.

  • PDF

Analytical solutions for skewed thick plates subjected to transverse loading

  • Chun, Pang-Jo;Fu, Gongkang;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.549-571
    • /
    • 2011
  • This paper presents analytical solutions for skewed thick plates under transverse loading that have previously been unreported in the literature. The thick plate solution is obtained in a framework of an oblique coordinate system. The governing equation is first derived in the oblique coordinate system, and the solution is obtained using deflection and rotation as partial derivatives of a potential function developed in this research. The solution technique is applied to three illustrative application examples, and the results are compared with numerical solutions in the literature and those derived from the commercial finite element analysis package ANSYS 11. These results are in excellent agreement. The present solution may also be used to model skewed structures such as skewed bridges, to facilitate efficient routine design or evaluation analyses, and to form special elements for finite element analysis. At the same time, the analytical solution developed in this research could be used to develop methods to address post-buckling and dynamic problems.

Analytical studies on stress concentration due to a rectangular small hole in thin plate under bending loads

  • Yang, Y.;Liu, J.K.;Cai, C.W.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.669-678
    • /
    • 2010
  • In general means, the stress concentration problem of elastic plate with a rectangular hole can be investigated by numerical methods, and only approximative results are derived. This paper deduces an analytical study of the stress concentration due to a rectangular hole in an elastic plate under bending loads. Base on classical elasticity theory and FEM applying the U-transformation technique, the uncoupled governing equations with 3-DOF are established, and the analytical displacement solutions of the finite element equations are derived in series form or double integral form. Therefore, the stress concentration factor can then be discussed easily and conveniently. For the plate subjected to unidirectional bending loads, the non-conforming plate bending element with four nodes and 12-DOF is taken as examples to demonstrate the application of the proposed method. The inner force distribution is obtained. The solutions are adequate for the condition when the hole is far away from the edges and the thin plate subjected to any transverse loadings.

Analytical study on non-natural vibration equations

  • Bayat, Mahmoud;Pakar, Iman
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.671-677
    • /
    • 2017
  • In this paper, two powerful analytical methods called Variational Approach (VA) and Hamiltonian Approach (HA) are used to solve high nonlinear non-Natural vibration problems. The presented approaches are works well for the whole range of amplitude of the oscillator. The first iteration of the approaches leads us to high accurate solution. Numerical results are also presented by using Runge-Kutta's [RK] algorithm. The full comparison between the presented approaches and the numerical ones are shown in figures. The effects of important parameters on the response of nonlinear behavior of the systems are studied completely. Finally, the results show that the Variational Approach and Hamiltonian approach are strong enough to prepare easy analytical solutions.

Deflection of battened beams with shear and discrete effects

  • Li, Ji-liang;Chen, Jian-kang
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.921-932
    • /
    • 2016
  • This paper presents a theoretical analysis for determining the transverse deflection of simply supported battened beams subjected to a uniformly distributed transverse quasi-static load. The analysis considers not only the shear effect but also the discrete effect of battens on the transverse deflection of the battened beam. The analytical solution is obtained using the principle of minimum potential energy. Numerical validation of the present analytical solution is accomplished using finite element methods. The present analytical solution shows that the shear effect on the transverse deflection of battened beams increases with the cross-section area of the main member but decreases with the cross-section area of the batten. The longer the battened beam is, or the larger the moment of inertia of the main member is, the smaller the shear effect will be.

A photo-thermal interaction in semi-conductor medium with cylindrical cavity by analytical and numerical methods

  • Abbas, Ibrahim A.
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.267-273
    • /
    • 2021
  • In this work, we compare the analytical solutions with the numerical solutions for photothermal interactions in semiconductor medium containing cylindrical cavity. This paper is devoted to a study of the photothermal interactions in semiconductor medium in the context of the coupled photo-thermal model. The basic equations are formulated in the domain of Laplace transform and the eigenvalue scheme are used to get the analytical solutions. The numerical solution is obtained by using the implicit finite difference method (IFDM). A comparison between the analytical solution and the numerical solutions are obtained. It is found that the implicit finite difference method (IFDM) is applicable, simple and efficient for such problems.

Consistent Displacement Load Method for Nonlinear Semi-Analytical Design Sensitivity Analysis (준해석적 비선형 설계민감도를 위한 보정변위하중법)

  • Lee, Min-Uk;Yoo, Jung-Hun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1209-1216
    • /
    • 2005
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

Axial behavior of steel reinforced lightweight aggregate concrete columns: Analytical studies

  • Mostafa, Mostafa M.A.;Wu, Tao;Fu, Bo
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.223-239
    • /
    • 2021
  • This paper presents the analytical modeling and finite element (FE) analysis, using ABAQUS software, of the new types of steel reinforced lightweight aggregate concrete (SRLAC) columns with cross-shaped (+shaped and X-shaped) steel section, using proposed three analytical and two FE models in total. The stress-strain material models for different components in the columns, including the confined zones of the lightweight aggregate concrete (LWAC) using three and four concrete zones divisions approaches and with and without taking into account the stirrups reaction effect, are established first. The analytical models for determining the axial load-deformation behavior of the SRLAC columns are drawn based on the materials models. The analytical and FE models' results are compared with previously reported test results of the axially loaded SRLAC columns. The proposed analytical and FE models accurately predict the axial behavior and capacities of the new types of SRLAC columns with acceptable agreements for the load-displacement curves. The LWAC strength, steel section ratio, and steel section configuration affect the contact stress between the concrete and steel sections. The average ratios of the ultimate test load to the three analytical models and FEA model loads, Put /Pa1, Put /Pa2, Put /Pa3, and Put /PFE1, for the tested specimens are 0.96, 1.004, 1.016, and 1.019, respectively. Finally, the analytical parametric studies are also studied, in terms of the effects of confinement, LWAC strength, steel section ratio, and the reinforcement ratio on the axial capacity of the SRLAC column. When concrete strength, confinements, area of steel sections, or reinforcement bars ratio increased, the axial capacities increased.