• Title/Summary/Keyword: analytical derivation

Search Result 124, Processing Time 0.021 seconds

Research on Voltage Stability Boundary under Different Reactive Power Control Mode of DFIG Wind Power Plant

  • Ma, Rui;Qin, Zeyu;Yang, Wencan;Li, Mo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1571-1581
    • /
    • 2016
  • A novel method is proposed to construct the voltage stability boundary of power system considering different Reactive Power Control Mode (RPCM) of Doubly-Fed Induction Generator (DFIG) Wind Power Plant (WPP). It can be used for reflecting the static stability status of grid operation with wind power penetration. The analytical derivation work of boundary search method can expound the mechanism and parameters relationship of different WPP RPCMs. In order to improve the load margin and find a practical method to assess the voltage security of power system, the approximate method of constructing voltage stability boundary and the critical points search algorithms under different RPCMs of DFIG WPP are explored, which can provide direct and effective reference data for operators.

Kinematic Design Sensitivity Analysis of Vehicle Suspension Systems using a Numerical Differentiation Method (수치미분에 의한 차량 현가장치의 기구학적 민감도 해석)

  • 탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.128-137
    • /
    • 1998
  • A numerical approach for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. Compared with the conventional analytical methods, which require explicit derivation of sensitivity equations, the proposed numerical method can be applied to any type of suspension systems without obtaining sensitivity equations, once any kinematic analysis procedure is established. To obtain sensitivity equations, a numerical differentiation algorithm that uses the third order Lagrange polynomial is developed. The algorithm efficiently and accurately computes the sensitivity of various vehicle static design factors with respect to kinematic design variables. Through a suspension design problem, the validity and usefulness of the method is demonstrated.

  • PDF

Radiated Noise of Helical Gear-plate System (헬리컬기어-플레이트 시스템의 방사소음)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1042-1048
    • /
    • 2007
  • This work analytically investigated the radiated noise of a helical gear-housing system due to the excitation of helical gears. The helical gears were modeled as a 12-degree of freedom mass-spring-damper system; the shaft was modeled as a rod, a beam, and a torsional shaft; and the gear housing was modeled as a clamped circular plate with viscous damping. The modeling of this system used transfer matrices for helical gears, shafts, and bearings. Damping for both the bearings and the plate were obtained by modal testing. For the evaluation of noise, sound pressure from the plate due to the force and the moment in both radial and tangential directions was analytically derived by the Rayleigh integral. The analytical derivation and parameters from the experiment were applied to an analysis of noise for the two sets of helical gears with differing gear ratios. The analysis showed that the moment excitation in both helical gears contributed more to the noise of the plate than axial force excitation.

  • PDF

Derivation of Critical Functions of the Future Attack Helicopter Using QFD (QFD를 이용한 미래 공격헬기의 핵심기능 도출)

  • Lee, Jae-Won;Kwon, Yong-Soo;Ko, Nam-Kyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.348-357
    • /
    • 2013
  • This work describes an approach that contributes to derive from mission to critical functions of the attack helicopter under future battle space environment. An existing mission of the attack helicopter is limited to the only shooter oriented functions. In the future environment, mission and its functions of the helicopter might be much expanded. The functions should be derived by the top down approach based on systems engineering approach. In this point of view, this work describes network based future battle environment. From this environment, the missions of the attack helicopter are identified and optimized functions are derived through sequential procedures like from missions to tasks, tasks to activities, and activities to functions. The selected activities are obtained from the tasks using QFD. The weighting scores of the QFD are calculated by the AHP computational procedure. Finally the critical functions are presented through the similar procedure.

Design of Screening Inspection Procedures Based on Guard Bands Considering Measurement Errors (측정오류를 고려한 가드밴드 기반 스크리닝 검사방식의 설계)

  • Kim, Young Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.4
    • /
    • pp.673-681
    • /
    • 2013
  • Purpose: The purpose of this study is to investigate the design optimization modeling of screening procedures based on the assessment of misclassification errors. Methods: Misclassification errors due to measurement variability are derived for normally distributed quality characteristics. Further, an optimization model for ensuring the level of outgoing quality is proposed and demonstrated through an illustrative example. Results: It is shown that two types of misclassification errors (i.e., false acceptance and false rejection) may be properly compromised through an analytical assessment of measurement errors and an optimization modeling. It is also discussed that a variety of optimization modeling may be enabled based on the derivation of measurement errors. Conclusion: It may be concluded that the design of screening inspection may further be facilitated by including the effect of measurement errors on the performance of screening inspection procedure.

A transport model for high-frequency vibrational power flows in coupled heterogeneous structures

  • Savin, Eric
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.53-81
    • /
    • 2008
  • The theory of microlocal analysis of hyperbolic partial differential equations shows that the energy density associated to their high-frequency solutions satisfies transport equations, or radiative transfer equations for randomly heterogeneous materials with correlation lengths comparable to the (small) wavelength. The main limitation to the existing developments is the consideration of boundary or interface conditions for the energy and power flow densities. This paper deals with the high-frequency transport regime in coupled heterogeneous structures. An analytical model for the derivation of high-frequency power flow reflection/transmission coefficients at a beam or a plate junction is proposed. These results may be used in subsequent computations to solve numerically the transport equations for coupled systems, including interface conditions. Applications of this research concern the prediction of the transient response of slender structures impacted by acoustic or mechanical shocks.

A Study on The Estimation of Effective Bulk Modulus of Hydraulic Oil With Pressure Variation (압력변동에 따른 유압유의 유효체적탄성계수 측정에 대한 연구)

  • 이재천;정용승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.179-184
    • /
    • 2003
  • It has been recognized that the compressibility of hydraulic fluid, which is characterized by the value of its bulk modulus, heavily affects on the system behavior and performance. In practice, the value of the oil bulk modulus varies by the operational and structural characteristics of the hydraulic system. This study presents the theoretical derivation of the effective bulk modulus and describes an experimental impulse technique that allows accurate measurement of oil effective bulk modulus with pressure variation in a hydraulic system. Experimental and analytical results show that the value of the effective bulk modulus varies a lot in low pressure region by the effect of entrained air, while the effective bulk modulus can be estimated just using the oil and container bulk modulus on the other high pressure region.

A Suggestion of Nonlinear Fuzzy PID Controller to Improve Transient Responses of Nonlinear or Uncertain Systems

  • Kim, Jong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.87-100
    • /
    • 1995
  • In order to control systems which contain nonlinearities of uncertainties, control strategies must deal with the effects of them. Since most of control methods based on system mathematical models have been mainly developed focused on stability robustness against nonlinearities or uncertainties under the assumption that controlled systems are linear time invariant, they have certain amount of limitations to smartly improve the transient responses of systems disturbed by nonlinearities or uncertainties. In this paper, a nonlinear fuzzy PID control method is suggested which can stably improve the transient responses of systems disturbed by nonlinearities, as well as systems whose mathematical characteristics are not perfectly known. Although the derivation process is based on the design process similar to general fuzzy logic controller, resultant control law has analytical forms with time varying PID gains rather than linguistic forms, so that implementation using common-used versatile microprocessors cna be achieved easily and effectively in real-time control aspect.

  • PDF

Performance Improvement of the Nonlinear Fuzzy PID Controller

  • Kim, Jong Hwa;Lim, Jae Kwon;Joo, Ha Na
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.927-934
    • /
    • 2012
  • This paper suggests a new fuzzy PID controller with variable parameters which improves the shortage of the fuzzy PID controller with fixed parameters suggested in [9]. The derivation procedure follows the general design procedure of the fuzzy logic controller, while the resultant control law is the form of the conventional PID controller. Therefore, the suggested controller has two advantages. One is that it has only four fuzzy linguistic rules and analytical form of control laws so that the real-time control system can be implemented based on low-price microprocessors. The other is that the PID control action can always be achieved with time-varying PID controller gains only by adjusting the input and output scalers at each sampling time.

Security performance analysis of SIMO relay systems over Composite Fading Channels

  • Sun, Jiangfeng;Bie, Hongxia;Li, Xingwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2649-2669
    • /
    • 2020
  • In this paper, we analyze the secrecy performance of single-input multiple-output (SIMO) relay systems over κ-μ shadowed fading channels. Based on considering relay model employing decode-and-forward (DF) protocol, two security evaluation metrics, namely, secure outage probability (SOP) and probability of strictly positive secrecy capacity (SPSC) are studied, for which closed-form analytical expressions are derived. In addition, Monte Carlo results prove the validity of the theoretical derivation. The simulation results confirm that the factors that enhance the security include large ratio of (μD, μE), (mD, mE), (LD, LE) and small ratio of (kD, kE) under the high signal-to-noise ratio regime.