• Title/Summary/Keyword: analysis system

Search Result 69,940, Processing Time 0.083 seconds

Kinematic Analysis of the Multi-Link Five-Point Suspension System in Point Coordinates

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1133-1139
    • /
    • 2003
  • In this paper, a numerical algorithm for the kinematic analysis of a multi-link five-point suspension system is presented. The kinematic analysis is carried out in terms of the rectangular Cartesian coordinates of some defined points in the links and at the joints. Geometric constraints are introduced to fix the relative positions between the points belonging to the same rigid body. Position, velocity and acceleration analyses are carried out. The presented formulation in terms or this system of coordinates is simple and involves only elementary mathematics. The results of the kinematic analysis are presented and discussed.

Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

  • Bucknor, Matthew;Grabaskas, David;Brunett, Acacia J.;Grelle, Austin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.360-372
    • /
    • 2017
  • Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.

Importance, Support and Application for Contract Foodservice Management Company′s Infra-System in the Viewpoint of Headquarters and Branch Office (위탁급식전문업체의 운영관리 인프라 시스템에 대한 본사와 업장 측면에서의 중요도, 지원도, 활용도 탐색)

  • 양일선;박문경;한경수;채인숙;박소현;이해영
    • Korean Journal of Community Nutrition
    • /
    • v.9 no.2
    • /
    • pp.233-240
    • /
    • 2004
  • This study was design to grope the suggestions leading synergic effects by bridging the gap between headquarters and branch office, and so to identify the infra-system of contract foodservice management company (CFMC) necessary for operating any kind of branch office including school, hospital and business and industry (B&I). Among 8 categories consisted of infra-system in CFMC, 'C8. Evaluation & analysis for branch office's operation' was the most important category in the headquarter's viewpoint, while 'C3. Sanitation management system' was the most important category in branch office's viewpoint. In support and application, 'C3. Sanitation management system' was the highest category in both headquarters and branch offices including school, hospital and B&I. As a result of analysis on gap between main and branch office in importance, support and application in 8 categories, the efforts of communication and community of perception for infrastructure were needed, because 'C4. Education & training for human resource management (HRM) system' and 'C8. Evaluation & analysis for branch office's operation' in importance, 'C2. Menu management system', 'C4. Education & training for HRM system', 'C6. Facility & utility support system' and 'C8. Evaluation & analysis for branch office's operation' in support had a gap. Correlation analysis to grasp the relation between importance of infra-system and headquarters' support or branch office's application showed that headquarters's importance and support were correlated positively in 'C3. Sanitation management system', 'C6. Facility & utility support system', 'C7. Customer satisfaction management system' and 'C8. Evaluation & analysis for branch office's operation' and branch office's importance and application were correlated positively in 'C1. Procurement & food processing system', 'C5. Management Information system', 'C7. Customer satisfaction management system' and 'C8. Evaluation & analysis for branch office's operation'. Lastly, 'C6. Facility & utility support system' in the branch office of school and hospital and 'C2. Menu management system' in the branch office of B&I were high in importance, low in support and application, therefore Intensive support for these categories was needed. In conclusion, continuous check and improvement for categories, which were identified as an urgent problems to be solved in this study, among infra-structure qualifying for CFMC, would enable contract foodservice industry that has grown quantitatively till now to grow qualitatively.

A study on the Engine Mounting System of the 4WD Vehicle by Experimental Modal Analysis (실험적 모우드해석을 통한 4WD 자동차의 엔진마운트에 관한 연구)

  • 사종성;김광식
    • Journal of KSNVE
    • /
    • v.1 no.1
    • /
    • pp.39-43
    • /
    • 1991
  • In this study, the design concept of engine for 4WD vehicle is established by the experimental modal analysis. First, the relationships between frame and power transmission system are considered. Second, the effect of additional system (Front propeller shaft and Exhaust system) on the power transmission system is evaluated. As a result, it is desirable that of frame and power transmission system is shifted by the additional system. This is cause by the moment of inertia of the additional system, because the center of gravity location of the additional system is far from that of the power transmission system.

  • PDF

Design and Analysis of An Electromagnetic System (전자기 시스템의 해석과 설계)

  • Park Seong-Wook;Kim Dong-Hun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.1
    • /
    • pp.17-19
    • /
    • 2006
  • This paper presents the design of an electromagnetic system such as jumping ring system, and also considers the characteristics of dynamics for system with initial parameter. For the propose of system analysis, the MATLAB tool is to solve coupled differential equations with inductances and mutual inductance. To apply a real electromagnetic system, this paper implements the jumping ring system using design parameters, and analyzes the jumping ring system with proposal step.

Development of Flood Inundation Analysis System for Urban Areas using GIS (GIS를 이용한 도시유역 홍수침수 분석시스템 구축)

  • 최성열;이재영;조원철;이재호;최철관
    • Spatial Information Research
    • /
    • v.11 no.2
    • /
    • pp.155-170
    • /
    • 2003
  • Flood inundation analysis system using GIS has been developed to simulate inundation in airport drainage areas. The model developed in this study has been synthetically presented and constructed the preprocess for database construction and input data preparing through a graphic user interface, GUI system and the postprocess processing graphically output resulted in mainprocess analysis model linked GIS(ArcView/Avenue). The mainprocess analysis model was simulated in real phenomenon caused by inflow of storm sewer system by simulation flooding due to backwater effect and surcharged flow in storm sewer system by simulating interaction coupling the overland flow analysis model and storm sewer system analysis model. In the future, the flood inundation analysis system developed in this study will be a great contribution to systematic decision-making for establishing the flood-mitigation management and facilities improvement plan to flooding damage in airport.

  • PDF

Development of a Framework for Improving Efficiency of Ship Vibration Analysis (선박 전선 진동해석 효율성 향상을 위한 프레임워크 개발)

  • Cho, Dae-Seung;Kim, Jin-Hyeong;Choi, Tae-Muk;Kim, Kyung-Soo;Choi, Sung-Won;Jung, Tae-Seok;Lee, Do-Kyung;Seok, Ho-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.761-767
    • /
    • 2011
  • Free and forced vibration analysis of the global ship structure using the 3-dimensional finite element(FE) method requires not only the specialized knowledge such as ship structure interacted with fluid, damping and various excitations due to propulsion system but also time-consuming manual tasks in FE modeling, analysis and response evaluation. As a result, the quality of the vibration analysis highly depends on engineer's expertise and experience. In this study, a framework system to improve the efficiency of global ship vibration analysis is introduced. The system promising the utilization of MSC/Patran and MSC/Nastran consists of various modules to support data management, FE modeling of ship structure and loading, input deck generation for free and forced vibration analysis, data extraction and evaluation of analysis results, and databases for FE models of marine diesel engines and vibration criteria. The system may be useful for pursuing standardization of uncertain analysis factors as well as reducing time, cost and human dependency in ship vibration analysis.

Development of a Framework for Improving Efficiency of Ship Vibration Analysis (선박 전선 진동해석 효율성 향상을 위한 프레임워크 개발)

  • Cho, Dae-Seung;Kim, Jin-Hyeong;Choi, Tae-Muk;Kim, Kyung-Soo;Choi, Sung-Won;Jung, Tae-Seok;Lee, Do-Kyung;Seok, Ho-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.779-784
    • /
    • 2011
  • Free and forced vibration analysis of the global ship structure using the 3-dimensional finite element(FE) method requires not only the specialized knowledge such as ship structure interacted with fluid, damping and various excitations due to propulsion system but also time-consuming manual tasks in FE modeling, analysis and response evaluation. As a result, the quality of the vibration analysis highly depends on engineer's expertise and experience. In this study, a framework system to improve the efficiency of global ship vibration analysis is introduced. The system promising the utilization of MSC/Patran and MSC/Nastran consists of various modules to support data management, FE modeling of ship structure and loading, input deck generation for free and forced vibration analysis, data extraction and evaluation of analysis results, and databases for FE models of marine diesel engines and vibration criteria. The system may be useful for pursuing standardization of uncertain analysis factors as well as reducing time, cost and human dependency in ship vibration analysis.

  • PDF

Development of radar cross section analysis system of naval ships

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Choi, Tae-Muk;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.20-32
    • /
    • 2012
  • A software system for a complex object scattering analysis, named SYSCOS, has been developed for a systematic radar cross section (RCS) analysis and reduction design. The system is based on the high frequency analysis methods of physical optics, geometrical optics, and physical theory of diffraction, which are suitable for RCS analysis of electromagnetically large and complex targets as like naval ships. In addition, a direct scattering center analysis function has been included, which gives relatively simple and intuitive way to discriminate problem areas in design stage when comparing with conventional image-based approaches. In this paper, the theoretical background and the organization of the SYSCOS system are presented. To verify its accuracy and to demonstrate its applicability, numerical analyses for a square plate, a sphere and a cylinder, a weapon system and a virtual naval ship have been carried out, of which results have been compared with analytic solutions and those obtained by the other existing software.

철도신호시스템에서의 향상된 안전성확보방안에 대한 연구

  • 이종우;신덕호;이기서
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.9-18
    • /
    • 2003
  • This paper discuss advanced safety in the railway signaling system. The specified methods and HAZOP about Hazard identification and analysis of railway signalling system were studied, and loss analysis and ALARP model in order to calculate safety as a standard capacity were proposed. It was also resulted from Hazard identification, analysis and evaluation by applying advanced safety to the railway signalling system.