• Title/Summary/Keyword: analyses

Search Result 27,451, Processing Time 0.045 seconds

The characteristics analyses of deteriorated PVC insulated flexible cords by over-current (과전류에 의해 열화된 비닐코드의 특성 분석)

  • Kim, Hyang-Kon;Choi, Chung-Seog;Kim, Dong-Ook;Chung, Hun-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.489-492
    • /
    • 2003
  • In this paper, we experimented on the deterioration process of power supply cords and analyzed the heating temperature of each part of those cords. We also analyzed the surface states, metallurgical structures surface structures and compositions of the wire melted by over-current. In the results of the analyses, the covering began to be deteriorated from the inside. The heating temperature of extension cord was higher than that of plug body. The dendrite structures appeared at the melted wire. By the SEM and EDS analyses, the dendrite structure showed the growth of copper oxide. We found out the characteristics of PVC insulated flexible cords by over-current from the above experiments and analyses. These results may be useful data in the analyses of deterioration causes of power supply cords.

  • PDF

Numerical Analyses on Consolidation Promotion Effect of Soft Clay Ground by Prefabricated Vertical Drain (PVD에 의한 연약점토지반의 압밀촉진효과에 대한 수치해석)

  • You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • In this paper, a series of numerical analyses on soft clay ground improved by PVD were carried out, in order to investigate the consolidation promotion effect considering PVD width and surcharge pressure. In the numerical analyses, an elasto-viscoplastic three-dimensional consolidation finite element method was applied, in which the applicability of numerical analyses could be confirmed comparing with consolidation behavior simulated at the laboratory. And, through the results of the numerical analyses, consolidation behaviors of soft clay ground with elapsed time was elucidated, together with the effects of PVD width and surcharge pressure.

  • PDF

The Study of Risk Acceptance Criteria for Railway System (철도시스템의 위험도 허용 기준 개발에 관한 연구)

  • Kim, Young-Sang;Maeng, Hee-Young;Wang, Jong-Bae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.796-805
    • /
    • 2008
  • Safety Management of Korean railway industry has been rapidly changed into a risk-based approach adopted by developed countries since Railway Safety Act 2004, Rolling Stock Risk Assessment Guidance and its following regulations came into force. The fundamental requirements for the risk-based safety management is to carry out a systematic hazard identification and quantified risk analyses including cost-benefit analyses, but there has been rare a serious discussion over risk acceptance criteria and value of life in order to be able to judge the results of risk analyses and carry out cost-benefit analyses. This study presents the results of a review of risk acceptance criteria and value of life which may be adoped to Korean railway industry through the analyses with comparison of risk accepatnce principles and risk accepatnce criteria which have been already applied to other countries or other railway operators.

  • PDF

Footing settlement formula based on multi-variable regression analyses

  • Hamderi, Murat
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 2019
  • The formulas offered so far on the settlement of raft footings provide only a rough estimate of the actual settlement. One of the best ways to make an accurate estimation is to conduct 3-dimensional finite element analyses. However, the required procedure for these analyses is comparatively cumbersome and expensive and needs a bit more expertise. In order to address this issue, in this study, a raft footing settlement formula was developed based on ninety finite element model configurations. The formula was derived using multi-parameter exponential regression analyses. The settlement formula incorporates the dimensions and the elastic modulus of a rectangular raft, vertical uniform pressure and soil moduli and Poisson's ratios up to 5 layers. In addition to this, an equation was offered for the estimation of average deflection of the raft. The proposed formula was checked against 3 well-documented case studies. The formula that is derived from 3D finite element analyses is useful in optimising the raft properties.

QUANTITATIVE ANALYSES USING 4D MODELS - AN EXPLORATIVE STUDY

  • Rogier Jongeling;Jonghoon Kim;Claudio Mourgues;Martin Fischer;Thomas Olofsson
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.830-835
    • /
    • 2005
  • 4D models help construction planners to develop and evaluate construction plans. However, current analyses using 4D models are mainly visual and limit the quantitative comparison of construction alternatives. This paper explores the usefulness of extracting quantitative information from 4D models to support time-space analyses. We use two 4D models of an industry test case to illustrate how to analyze 4D content quantitatively (i.e., work space areas and distances between concurrent activities). This paper shows how these two types of 4D content can be extracted from 4D models to support 4D-based-analysis and novel presentation of construction planning information. We suggest further research to formalize the content of 4D models to enable comparative quantitative analyses of construction planning alternatives. Formalized 4D content will enable the development of reasoning mechanisms that automate 4D-model-based analyses and provide the information content for informative presentations of construction planning information.

  • PDF

A Quality Assessment of Meta-Analyses of Nursing in South Korea (국내 간호학 분야 메타분석 논문의 질 평가)

  • Kim, Jung-Hee;Kim, Ae-Kyung
    • Journal of Korean Academy of Nursing
    • /
    • v.43 no.6
    • /
    • pp.736-745
    • /
    • 2013
  • Purpose: The purpose of the study was to assess the quality of meta-analyses on nursing published in South Korea. Methods: Relevant meta-analyses were identified through searches of the National Assembly Library, KISS (Korean Studies Information Service System), and the DBpia and RISS4U databases from 1990 to May 2013. Quality assessments were conducted using AMSTAR, a validated tool for assessing the quality of systematic reviews. Results: Forty-two meta-analyses were included in this study. Twenty-nine published between 1990 and 2010, and 13, between 2011 and May 2013. Two high quality studies and 11 moderate quality studies were published in the latter period. The mean score for the reviews was 5.61 (range 3-10); 11 studies were rated as low quality, 29 as moderate quality, and two as high quality. Conclusion: Although an improvement in the quality of meta-analyses conducted by nursing researchers in South Korea was observed across the study period, the study results indicate a need to use of more rigorous research methods when conducting systematic reviews or meta-analyses.

Stability Estimation Method for Pillar Considering the Reinforcement Method during Twin-Tunnel Excavation (병설터널 굴착시 필라부의 보강을 고려한 안정성 평가기법)

  • Jang, Bu-Sik;Hwang, Jung-Soon;Ryu, June-Won;Lee, Eung-Ki;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.980-987
    • /
    • 2006
  • Recently, twin-tunnel is often designed considering the aspects of disaster prevention and economic reasons. However, the design cases and the studies are relatively insufficient. By the twin-tunnel excavation, deviate stresses of pillar between tunnels are increased and the increased stresses induce the instability of the twin-tunnel. In this study, numerical analyses about the twin-tunnel behaviour are conducted while varying ground strength, width of pillar and depth of earth cover and a series of regression analyses are carried out by using the results of numerical analyses for the twin-tunnel. Based on the numerical analyses, an estimation method of derived stresses is suggested though the regression analyses. Also, based on the results of regression analyses, an quantitative estimation method considering the reinforcement effects is also suggested. Then various parametric studies are conducted to be considered the reinforcement type and various design parameters. Finally, the efficiency of the suggested method is verified through the results of parametric studies.

  • PDF

Nonlinear Subgrade Model-Based Comparison Study between the Static and Dynamic Analyses of FWD Nondestructive Tests (노상의 비선형 모델에 근거한 비파괴 FWD 시험에 있어 정적과 동적 거동의 비교연구)

  • Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.73-80
    • /
    • 2017
  • PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over fine-grained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade model-based comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.

Round Robin Analyses on Stress Intensity Factors of Inner Surface Cracks in Welded Stainless Steel Pipes

  • Han, Chang-Gi;Chang, Yoon-Suk;Kim, Jong-Sung;Kim, Maan-Won
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1412-1422
    • /
    • 2016
  • Austenitic stainless steels (ASSs) are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs) were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.

Effectiveness of seismic isolation in a reinforced concrete structure with soft story

  • Hakan Ozturk;Esengul Cavdar;Gokhan Ozdemir
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.405-418
    • /
    • 2023
  • This study focused on the effectiveness of seismic isolation technique in case of a reinforced concrete structure with soft story defined as the stiffness irregularity between adjacent stories. In this context, a seismically isolated 3-story reinforced concrete structure was analyzed by gradually increasing the first story height (3.0, 4.5, and 6.0 m). The seismic isolation system of the structure is assumed to be composed of lead rubber bearings (LRB). In the analyses, isolators were modeled by both deteriorating (temperature-dependent analyses) and non-deteriorating (bounding analyses) hysteretic representations. The deterioration in strength of isolator is due to temperature rise in the lead core during cyclic motion. The ground motion pairs used in bi-directional nonlinear dynamic analyses were selected and scaled according to codified procedures. In the analyses, different isolation periods (Tiso) and characteristic strength to weight ratios (Q/W) were considered in order to determine the sensitivity of structural response to the isolator properties. Response quantities under consideration are floor accelerations, and interstory drift ratios. Analyses results are compared for both hysteretic representations of LRBs. Results are also used to assess the significance of the ratio between the horizontal stiffnesses of soft story and isolation system. It is revealed that seismic isolation is a viable method to reduce structural damage in structures with soft story.