• 제목/요약/키워드: anaerobic reactor

검색결과 449건 처리시간 0.026초

Anaerobic Ammonium Oxidation Process in an Upflow Anaerobic Sludge Blanket Reactor with Granular Sludge Selected from an Anaerobic Digestor

  • Tran, Hung-Thuan;Park, Young-Joo;Cho, Mi-Kyeoung;Kim, Dong-Jin;Ahn, Dae-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권3호
    • /
    • pp.199-204
    • /
    • 2006
  • The purpose of this work was to evaluate the development of the anammox process by the use of granular sludge selected from a digestion reactor as a potential seed source in a lab-scale UASB (upflow anaerobic sludge blanket) reactor system. The reactor was operated for approximately 11 months and was fed by synthetic wastewater. After 200 days of feeding with $NH_4^+\;and\;NO_2^-$ as the main substrates, the biomass showed steady signs of ammonium consumption, resulting in over 60% of ammonium nitrogen removal. This report aims to present the results and to more closely examine what occurs after the onset of anammox activity, while the previous work described the start-up experiment and the presence of anammox bacteria in the enriched community using the fluorescence in situ hybridization (FISH) technique. By the last month of operation, the consumed $NO_2^--N/NH_4^+-N$ ratio in the UASB reactor was close to 1.32, the stoichiometric ratio of the anammox reaction. The obtained results from the influent-shutdown test suggested that nitrite concentration would be one key parameter that promotes the anammox reaction during the start-up enrichment of anammox bacteria from granular sludge. During the study period, the sludge color gradually changed from black to red-brownish.

ABR과 ASBR 형태에 따른 혐기성 메탄 발효 운전 성능 평가 (Performance Evaluation of ABR and ASBR for Anaerobic Methane Fermentation)

  • 이채영;이세욱
    • 유기물자원화
    • /
    • 제19권2호
    • /
    • pp.49-54
    • /
    • 2011
  • 본 연구는 혐기성 수소 발효 반응조의 유출수를 기질로 이용하여 anaerobic baffled reactor (ABR) 및 anaerobic sequencing batch reactor (ASBR) 형태에 따른 혐기성 메탄 발효 성능을 평가하였다. 두 개의 반응조는 유기물 부하율 $1.0kg\;COD/m^3{\cdot}d$와 수리학적 체류시간 20일에서 운전을 수행하였다. ABR과 ASBR의 초기 운전 기간에서 메탄 발생량은 각각 0.04 L/L/d와 0.19 L/L/d로 나타났으며, ABR과 ASBR의 최대 메탄 발생량은 각각 0.25 L/L/d와 0.31 L/L/d로 나타났다. ABR과 ASBR의 초기 운전 기간에서 COD 제거율은 각각 89%와 92%로 나타났다. 정상 상태에 도달한 후에는 ABR과 ASBR의 COD 및 VS의 제거율은 각각 90% 이상 유지되었다. 비메탄 활성도는 미생물이 기질에 적응함에 따라 반응조에 상관없이 증가하였다.

유기산 생산 세균을 고정화학 2상 메탄발효조에 의한 주정 폐수의 고효율 소화 (A Study on the Use of an Immobilized-Cell Acidogenic Reactor for the High Rate Digestion of a Distillery Wastewater)

  • 배재근;고종호;김병홍
    • 한국미생물·생명공학회지
    • /
    • 제22권4호
    • /
    • pp.407-414
    • /
    • 1994
  • Anaerobic fermentative bacteria were isolated from the acidogenic reactor of a labora- tory scale 2-stage anaerobic digestor. The isolate 1-6 was selected for its ablity to produce more fatty acids from distillery wastewater than others, and was identified as a strain of Clostridium. The isolate Clostridium sp. 1-6 is a thermophilic bacterium growing at 55$\circ$c , and grew best at pH 5.5. An acidogenic reactor using immobilized cells of the isolate Clostridium sp. 1-6 removed about 15% of COD from distillery wastwater as hydrogen, producing about 50 mM butyrate and about 10 mM acetate, when the reactor was operated at the hydraulic retention time(HRT) of 0.8 hr. It is proposed that this system can be used to convert the distillery wastewater to hydrogen and butyrate. More than 90% of COD was removed from the wastewater by anaerobic digestion using a 2-stage digestor consisting of a UASB methanogenic reactor and an acidogenic reactor of the immobilized cells of isolate Clostridium sp. 1-6.

  • PDF

황산염이 UASB 반응조에서 혐기성 분해 반응에 미치는 영향 (The Effects of Sulfate on Anaerobic Treatment with UASB)

  • 정승현;양병수
    • 환경위생공학
    • /
    • 제13권2호
    • /
    • pp.47-56
    • /
    • 1998
  • Effects of sulfate on the anaerobic substrate utilization were evaluated using UASB (Upflow Anaerobic Sludge Blanket) reactor. Effect of sulfate on the organic removal rate was dependent on the relative amount of microorganisms in the reactor, the operational condition, and the characteristics of sludge. When the sulfate shock was applied to 0.0 - 3.0g SO$_{4}$$^{2-}$/d, more than 95% of COD removal efficiency was achieved. Therefore, if F/M ratio was kept to low sufficiently with recirculation, it is shown that operation of the reactor was not affected significantly, though sulfate shock load was doubled compared to the normal operation. Provided that it is shocked by high strength of sulfate or temporary shock load is applied frequently the efficiency of reactor may be disadvantageous as well as the wash-out of sludge will be increased by decreasing the size to the accumulated frequency of granular sludge and the size with maximum frequency.

  • PDF

혐기성 슬러지 공정과 호기성 고정생물막 공정을 이용한 염색폐수 처리 (Treatment of Textile Wastewater by Anaerobic Sludge and Aerobic Fixed-Bed Biofilm Reactor)

  • 박영식;문정현
    • 한국환경보건학회지
    • /
    • 제28권3호
    • /
    • pp.55-63
    • /
    • 2002
  • This study was carried out to treat textile wastewater using anaerobic sludge and aerobic fixed-bed biofilm reactor immobilized with Bacillus sp. dominated activated sludge(Bacillus sp. fraction : 81.5%). The range of influent con-centration of SCOD and soluble color were 1032-1507 mg/1, and 1239-1854 degree, respectively. Continuous treatment experiments were performed with variation of textile wastewater ratio at a same HRT. When textile wastewater ratio was 100%(HRT : 24 hours), The removal efficiency of SCOD and soluble color were 88% and 78%, respectively. When compare aerobic reactor of this study that was immobilized with Bacillus sp. dominated activated sludge to other study that was immobilized with activated sludge, SCOD and soluble color removal efficiency of this study showed a little higher efficiency than immobilized with activated sludge. The Bacillus sp. fraction of initial condition was 81.5%), but the fraction after operation was decreased to 31.8%).

Comparative Analysis of Performance and Microbial Characteristics Between High-Solid and Low-Solid Anaerobic Digestion of Sewage Sludge Under Mesophilic Conditions

  • Lu, Qin;Yi, Jing;Yang, Dianhai
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.110-119
    • /
    • 2016
  • High-solid anaerobic digestion of sewage sludge achieves highly efficient volatile solid reduction, and production of volatile fatty acid (VFA) and methane compared with conventional low-solid anaerobic digestion. In this study, the potential mechanisms of the better performance in high-solid anaerobic digestion of sewage sludge were investigated by using 454 high-throughput pyrosequencing and real-time PCR to analyze the microbial characteristics in sewage sludge fermentation reactors. The results obtained by 454 highthroughput pyrosequencing revealed that the phyla Chloroflexi, Bacteroidetes, and Firmicutes were the dominant functional microorganisms in high-solid and low-solid anaerobic systems. Meanwhile, the real-time PCR assays showed that high-solid anaerobic digestion significantly increased the number of total bacteria, which enhanced the hydrolysis and acidification of sewage sludge. Further study indicated that the number of total archaea (dominated by Methanosarcina) in a high-solid anaerobic fermentation reactor was also higher than that in a low-solid reactor, resulting in higher VFA consumption and methane production. Hence, the increased key bacteria and methanogenic archaea involved in sewage sludge hydrolysis, acidification, and methanogenesis resulted in the better performance of high-solid anaerobic sewage sludge fermentation.

혐기성 부착미생물의 초기성장에 미치는 영향인자에 관한 연구 (Laboratory Study on the Factors Affecting on Initial Anaerobic Biomass Development)

  • 허준무;박종안;손부순
    • 환경위생공학
    • /
    • 제13권1호
    • /
    • pp.185-194
    • /
    • 1998
  • Laboratory-scale investigation into initial anaerobic biofilm development was carried out by circulating mixed liquor from a steady-state anaerobic reactor through silicone tubing and then rerurning the mixed liquor to the reactor. The wall of the silicone tubing was the surface upon which anaerobic biofilm accumulation or development was monitored. Methanogenic bacteria accumulation was monitored by F$_{420}$ fluorescence (picomoles F$_{420}$/cm$^{2}$) of the extracted biofilm material. Biofilm accumulation was measured by the increase in COD of the extracted material ($\mu $g COD/cm$^{2}$). Experiments were conducted for 25 days, and biofilm analyses were performed at 5 days intervals. The results indicated that the initial rates of methangen and anaerobic biofilm accumulation increased with increasing organic loading rate and higher initial rates were observed for 15 days than 15 day liquid HRT or SRT. When the initial rates were plotted against the corresponding mixed liquor volatile suspended solids the difference between the results at the two HRT's became much less significant. Thus, the concentration of mixed liquor volatile suspended solids was found to be a very important parameter affecting initial anaerobic biofilm development. The ratio of methanogens to anaerobic biofilm was also investigated. The results showed that the ratio remained constant through the 25 days of each experiment and for high organic loading rates. Based on the results of this research, a reduction, a reduction of start-up period of anaerobic fixed film reactors might be achieved by maintaining a high organic loading and a large concentration of anaerobic microorganisms in the mixed liquor during the start-up period.

  • PDF

메탄발효를 위한 도시쓰레기 초고온 가용화 방법의 효율성 검토 (A Study of Biological Hydrolysis Efficiency for Methane Digestion with Municipal Solid Waste)

  • 천지훈
    • 상하수도학회지
    • /
    • 제24권5호
    • /
    • pp.561-572
    • /
    • 2010
  • The efficiency of biological hydrolysis at $80^{\circ}C$ on municipal solid waste mixed with anaerobic digestion sludge was investigated in 100L batch reactors. The hydrolysis effect was observed within a day, when the hydrolysis reactor used for a pre-treatment reactor for methanogenesis, and the effect was observed during two days, When the reactor used for post-treatment reactor. For both configurations, methane production rate decreased, when hydrolysis was carried out more than a day. Gaseous ammonia in the hydrolysis reactors was successtully removed by the ammonia stripping system. Microbial diversity analysis on the hydrolysis reactors indicated dependency of microbial diversity on the configuration of the hydrolysis reactors. Carbohydrate and lactate degrading microbes dominated in the hydrolysis reactor, when the hydrolysis reactor used for a pre-treatment reactor for methanogenesis, while protein degrading microbes dominated in the post-treatment reactor.

PHOSPHORUS RELEASE AND UPTAKE ACCORDING TO NITRATE LOADING IN ANOXIC REACTOR OF BNR PROCESS

  • Kim, Kwang-Soo
    • Environmental Engineering Research
    • /
    • 제10권5호
    • /
    • pp.257-263
    • /
    • 2005
  • A batch and a continuous type experiments were conducted to test the conditions for simultaneous phosphorus release and uptake, and denitrification, taking place in one process. The bacteria able to denitrify as well as to remove phosphorus were evaluated for the application to biological nutrient removal(BNR) process. In the batch-type experiment, simultaneous reactions of phosphorus release and uptake, and also denitrification were observed under anoxic condition with high organic and nitrate loading. However the rate and the degree of P release were lower than that occurred under anaerobic condition. BNR processes composed of anaerobic-anoxic-oxic(AXO), anoxic-anaerobic-oxic(XAO) and anoxic-oxic(XO) were operated in continuous condition. The anoxic reactors in each process received nitrate loading. In the AXO process, P release in anaerobic reactor and the luxury uptake in oxic reactor proceeded actively regardless to nitrate loading. However in XAO and XO processes, P release and luxury uptake occurred only with the nitrate loading less than $0.07\;kg{NO_3}^--N$/kgMLSS-d. With higher nitrate load, P release increased and the luxury uptake decreased. Therefore, it appeared that the application of denitrifying phosphorus-removing bacteria (DPB) to BNR process must first resolve the problem with decrease of luxury uptake of phosphorus in oxic reactor.

질산화수 주입 방법에 따른 혐기성필터 거동 고찰 (Study on Characteristics of the Anaerobic Filter by Nitrate Adding Points)

  • 임승주;이윤진
    • 한국환경보건학회지
    • /
    • 제33권1호
    • /
    • pp.57-62
    • /
    • 2007
  • Characteristics of the upflow anaerobic filter process have been studied with six other conditions. When nitrate was mixed with influent in the bottom of the reactor, removal efficiencies of TBOD and TCOD were lower than those of TBOD and TCOD when nitrate was injected to the side of the reactor. In addition, when nitrate was injected to the side of the reactor the concentration of volatile acids of effluent was not high and ORP of effluent was lower than the mixture when nitrate was mingled with influent. It means that the bottom of the anaerobic filter played an important role in making volatile acids, methane production, and denitrification. Moreover, percentage of methane in the gas increased in accordance with increasing nitrate injection. It was because there were a lot of methane producing microorganisms which would rather use hydrogen than acetate. This reactor condition gets unstable due to provide nitrate. Therefore, higher hydrogen Pressure, shorter generation time, and lower standard Gibb's free energy gave great portion of methane of gas.