• Title/Summary/Keyword: an advanced chemical solution synthesis

Search Result 34, Processing Time 0.027 seconds

Application of Polyaniline to an Enzyme-Amplified Electrochemical Immunosensor as an Electroactive Report Molecule

  • Kwon, Seong-Jung;Seo, Myung-Eun;Yang, Hae-Sik;Kim, Sang-Youl;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3103-3108
    • /
    • 2010
  • Conducting polymers (CPs) are widely used as matrixes for the entrapment of enzymes in analytical chemistry and biosensing devices. However, enzyme-catalyzed polymerization of CPs is rarely used for immunosensing due to the difficulties involved in the quantitative analysis of colloidal CPs in solution phase. In this study, an enzyme-amplified electrocatalytic immunosensor employing a CP as a redox marker has been developed. A polyanionic polymer matrix, $\alpha$-amino-$\omega$-thiol terminated poly(acrylic acid), was employed for precipitation of CP. The acrylic acid group acts as a polyanionic template. The thiol terminus of the polymer was used to produce self-assembled monolayers (SAMs) on Au electrodes and the amine terminus was employed for immobilization of biomolecules. In an enzymeamplified sandwich type immunosensor, the polyaniline (PANI) produced enzymatically is attracted by the electrostatic force of the matrix polymer. The precipitated PANI was characterized by electrochemical methods.

Synthesis, Characterization and Functionalization of the Coated Iron Oxide Nanostructures

  • Tursunkulov, Oybek;Allabergenov, Bunyod;Abidov, Amir;Jeong, Soon-Wook;Kim, Sungjin
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • The iron oxides nanoparticles and iron oxide with other compounds are of importance in fields including biomedicine, clinical and bio-sensing applications, corrosion resistance, and magnetic properties of materials, catalyst, and geochemical processes etc. In this work we describe the preparation and investigation of the properties of coated magnetic nanoparticles consisting of the iron oxide core and organic modification of the residue. These fine iron oxide nanoparticles were prepared in air environment by the co-precipitation method using of $Fe^{2+}$: $Fe^{3+}$ where chemical precipitation was achieved by adding ammonia aqueous solution with vigorous stirring. During the synthesis of nanoparticles with a narrow size distribution, the techniques of separation and powdering of nanoparticles into rather monodisperse fractions are observed. This is done using controlled precipitation of particles from surfactant stabilized solutions in the form organic components. It is desirable to maintain the particle size within pH range, temperature, solution ratio wherein the particle growth is held at a minimum. The iron oxide nanoparticles can be well dispersed in an aqueous solution were prepared by the mentioned co-precipitation method. Besides the iron oxide nanowires were prepared by using similar method. These iron oxide nanoparticles and nanowires have controlled average size and the obtained products were investigated by X-ray diffraction, FESEM and other methods.

Synthesis of Li4Ti5O12 Thin Film with Inverse Hemispheric Structure

  • Lee, Sung-Je;Jung, Kwang-Hee;Park, Bo-Gun;Kim, Ho-Gi;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.360-364
    • /
    • 2010
  • $Li_4Ti_5O_{12}$ thin film with inverse hemispheric structure was fabricated on a Pt/Ti/$SiO_2$/Si substrate by the sol-gel and dip coating method for use as an anode for 3-dimensional (3D) thin-film batteries. Polystyrene (PS) beads of 400 nm diameter were used to prepare the template for the inverse hemispheric structure. A coating solution prepared using precursor sources was dropped on the template-deposited substrates, which were then calcinated at $400^{\circ}C$. The template was removed by calcination, and the inverse hemispheric structure was successfully formed by an annealing process. The cyclic performance during high-rate charge/discharge processes of the $Li_4Ti_5O_{12}$ film with inverse hemispheric structure was superior to that of the flat $Li_4Ti_5O_{12}$ film.

Preparation and Refinement Behavior of (Hf-Ti-Ta-Zr-Nb)C High-Entropy Carbide Powders by Ultra High Energy Ball Milling Process (초고에너지 볼 밀링공정에 의한 (Hf-Ti-Ta-Zr-Nb)C 고엔트로피 카바이드 분말 제조 및 미세화 거동)

  • Song, Junwoo;Han, Junhee;Kim, Song-Yi;Seok, Jinwoo;Kim, Hyoseop
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.34-40
    • /
    • 2022
  • Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh-energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600℃.

Synthesis of Expanded Graphite-Titanium Oxide Composite and its Photocatalytic Performance

  • Oh, Won-Chun;Choi, Jong-Geun;Zhang, Feng-Jun;Go, Yu-Gyoung;Chen, Ming-Liang
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.210-215
    • /
    • 2010
  • In this study, an expanded graphite-titanium oxide composite is developed from expanded graphite (EG) and titanium n-butoxide (TNB). EG is synthesized by chemical intercalation of natural graphite (NG) and rapid expansion at high temperature. TNB is used as the titanium source. The performances of the prepared EG-$TiO_2$ composite are characterized by BET surface area measurements, scan electron microscope (SEM), X-ray diffraction patterns (XRD) and energy dispersive X-ray analysis (EDX). The catalytic activities of the EG-$TiO_2$ composite are investigated by analysis of the degradation of methylene blue (MB) in aqueous solution under irradiation of UV light. Compared with the pristine $TiO_2$ and activity carbon-$TiO_2$ (AC-$TiO_2$) composite, the EG-$TiO_2$ composite shows very high efficiency against MB solution, and the EG could improve the photocatalytic effect of $TiO_2$ in the MB degradation reaction under the irradiation of UV light.

Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites

  • Philip, Mercy A.;Natarajan, Upendra;Nagarajan, Ramamurthy
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • Polymer nanocomposites are advanced nanomaterials which exhibit dramatic improvements in various mechanical, thermal and barrier properties as compared with the neat polymer. Polystyrene/ alumina nanocomposites were prepared by an ultrasound-assisted solution casting method at filler loadings ranging from 0.2 to 2% and also at different ultrasonic frequencies, viz. 58 kHz, 192/58 kHz, 430 kHz, 470 kHz and 1 MHz. The composites were subjected to mechanical property tests (tensile and impact tests) and cavitation erosion tests to study the enhancement in functional properties. Filler dispersion in the polymer matrix was observed by SEM analysis. The effect of frequency on filler dispersion in the matrix was studied by SEM analysis and functional property enhancement of the composite material. The composites prepared at dual (high/ low) frequency (192/58 kHz) were found to show better property enhancement at low filler loadings as compared with neat polymer and also with composites prepared without ultrasound, thus reinforcing the finding that ultrasound-assisted synthesis is a promising method for the synthesis of nanocomposites.

Synthesis and Characterization of Comb-Type Grafted Polymer Hydrogels with Low Temperature Sensitivity (저온 감열 특성을 가지는 Comb-Type Grafted Polymer Hydrogels의 합성 및 특성평가)

  • Taek Kyu Jung;Sung Soo Kim;Byung Cheol Shin
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.1
    • /
    • pp.59-66
    • /
    • 2003
  • The comb-type grafted polymer hydrogels, which composed of N-isopropylacrylamide monomer and oligo(N-isopropylacrylamide-co-tert-butylacrylamide) [oligo(NIPAAm-co-t-BAM)], were synthesized by redox polymerization in 5~10% methanol aqueous solution using ammonium peroxodisulfate (APS) at 4 oC for 24h. The lower critical solution temperatures (LCSTs) of the comb-type grafted hydrogels were decreased with increase of t-BAM content in the grafted copolymer. We observed the effect of crosslinker and concentration of oligo(NIPAAm-co-t-BAM) on the shrinking/swelling ratio of hydrogels. Changes of shrinking/swelling ratio were decreased with increase of concentration of crosslinker. The increase of grafted oligo(NIPAAm-co-t-BAM) in the hydrogel shows an fast changes of shrinking/ swelling rate. The comb-type grafted hydrogels are expected to be valuable for the sensing materials of time-temperature labels(TTLs).

Synthesis of Highly Dispersed and Conductive Graphene Sheets by Exfoliation of Preheated Graphite in a Sealed Bath and its Applications to Polyimide Nanocomposites

  • Hossain, Muhammad Mohsin;Hahn, Jae Ryang;Ku, Bon-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2049-2056
    • /
    • 2014
  • A simple method for exfoliating pristine graphite to yield mono-, bi-, and multi-layers of graphene sheets as a highly concentrated (5.25 mg/mL) and yielded solution in an organic solvent was developed. Pre-thermal treatment of pristine graphite at $900^{\circ}C$ in a sealed stainless steel bath under high pressures, followed by sonication in 1-methyl-2-pyrrolidinone solvent at elevated temperatures, produced a homogeneous, well-dispersed, and non-oxidized graphene solution with a low defect density. The electrical conductivities of the graphene sheets were very high, up to 848 S/cm. These graphene sheets were used to fabricate graphene-polyimide nanocomposites, which displayed a higher electrical conductivity (1.37 S/m) with an improved tensile strength (95 MPa). The synthesized graphene sheets and nanocomposites were characterized by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy.

Synthesis and Characterization of New Positive Type Photosensitive Poly(amic acid)s (신규 양성형 감광성 폴리암산의 합성 및 특성 연구)

  • Sim Hyun-Bo;Yu Yeong-Im;Yi Mi-Hye
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.162-167
    • /
    • 2006
  • Polyamic acid (PAA) was prepared from cyclobutane-1,2,3,4-tetracarboxylic dianhydride (CBDA) and 4,4'-fiaminodiphenyl ether (DDE). In order to impart a photosensitivity to the PAA, diazonaphthoquinone (DNQ) derivative (DI) was added. However, the addition of the DI was not enough to inhibit the dissolution of the PAA for a aqueous alkal solution. Therefore, we had synthesized poly(amic acid ester)s by an adding 1,2-epoxy-3-phenoxypropane to the PAA. That is, an acidity of the PAA could be controlled by an esterification reaction of 1,2-epoxy-3-phenoxypropane with the PAA. Significant difference of a dissolution rate of the poly(amic acid ester) between an o(posed and unexposed area was observed at an acid content of 60% and less. Resolution of the positively patterned film showed about $25{\mu}m$ at the exposure dose of $200mJ/cm^2$.

Hydrothermal Synthesis, Characterization and Improved Activity of a Visible-Light-Driven ZnSe-Sensitized TiO2 Composite Photocatalyst

  • Zhu, Lei;Peng, Mei-Mei;Cho, Kwang Youn;Ye, Shu;Sarkar, Sourav;Ullah, Kefayat;Meng, Ze-Da;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.504-509
    • /
    • 2013
  • In this study, ZnSe-$TiO_2$ composites were synthesized by a facile hydrothermal-assisted sol-gel process and characterized by nitrogen adsorption isotherms (77 K), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectrophotometry. The photocatalytic activity was investigated by decoloration methylene blue (MB), methyl orange (MO), and rhodamine B (Rh.B) in an aqueous solution under visible light irradiation. The results revealed that the photocatalytic activity of the ZnSe-$TiO_2$ photocatalyst was much higher than that of pure$TiO_2$. The ZnSe nanoparticles, which act as a photosensitizer, not only extend the spectral response of $TiO_2$ to the visible region but also reduce charge recombinations.