• Title/Summary/Keyword: amylolytic enzyme

Search Result 38, Processing Time 0.025 seconds

Diurnal Fluctuations of Saprophytic Bacterial distribution and Their Extracellular Enzyme Activities in the Overlying Waters of Sediment of the Yellow Sea near Daesan, Korea (대산인근 해역에서 간만조에 따른 종속영양세균의 일일 분포와 세포외 효소 활성력의 변화)

  • Lee, Geon-Hyoung;Gang-Guk Choi;Chun-Bong Baek
    • The Korean Journal of Ecology
    • /
    • v.18 no.3
    • /
    • pp.409-418
    • /
    • 1995
  • As a part of studying the function and structure of the mudflat environment of the Yellow Sea, seawater samples in the overlying waters of sediment near Daesan were collected every hour on March 29 (spring tides) and on April 5 (neap tides), 1995 to study the diurnal distribution of aerobic saprophytic bacteria and their extracellular enzyme activities. The diurnal distribution of aerobic saprophytic bacteria ranged from 1.0 X $10^{2}$ to 7.07 X $10^{3}$ cfu /ml at spring tides and from 1.0 X $10^{2}$ to 8.3 X $10^{3}$ cfu /ml at neap tides. The diurnal variations of aerobic saprophytes at the suface waters were greater than those of middle and bottom waters. However, th diurnal fluctuation of saprophyte numbers at spring tides showed no significant difference compared with that at neap tides. The numbers of three physiological groups of aerobic hacteria (proteolytic, lipolytic and amylolytic bacteria) at the surface waters during spring and neap tides were lower than those at the middles and bottom waters. The diurnal variations of five extracellular enzyme activities at the surface waters during the survey period showed lower values than those at the middle and botton waters. Among the measured extracellular enzyme activities, phosphatase showed the highest. However, the activities of amylase, chitinase and cellulase showed a similar tendency.

  • PDF

A New Protein of ${\alpha}$-Amylase Activity from Lactococcus lactis

  • Wasko, Adam;Polak-Berecka, Magdalena;Targonski, Zdzislaw
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1307-1313
    • /
    • 2010
  • An extracellular ${\alpha}$-amylase from Lactococcus lactis IBB500 was purified and characterized. The optimum conditions for the enzyme activity were a pH of 4.5, temperature of $35^{\circ}C$, and enzyme molecular mass of 121 kDa. The genome analysis and a plasmid curing experiment indicated that $amy^+$ genes were located in a plasmid of 30 kb. An analysis of the phylogenetic relationships strongly supported a hypothesis of horizontal gene transfer. A strong homology was found for the peptides with the sequence of ${\alpha}$-amylases from Ralstonia pikettii and Ralstonia solanacearum. The protein with ${\alpha}$-amylase activity purified in this study is the first one described for the Lactococcus lactis species, and this paper is the first report on a Lactococcus lactis strain belonging to the amylolytic lactic acid bacteria (ALAB).

Antifungal Activity and Exoenzyme Production of Several Bacteria Antagonistic to Trichoderma spp. Causing Green Mold Disease (버섯 푸른곰팡이균에 대한 길항세균의 항균활성과 세포외 분비효소 생성능)

  • Hyun, Soung-Hee;Min, Bong-Hee
    • The Korean Journal of Mycology
    • /
    • v.30 no.2
    • /
    • pp.147-151
    • /
    • 2002
  • Trichoderma spp. are the aggressive causal agents for green mold disease on oyster mushroom (Pleurotus spp.) cultivation. Antifungal bacteria (KATB 99121, KATB 99122 and KATB 99123 strains) were isolated from the compost for Pleurotus ostreatus. Among these bacterial strains, KATB 99121 strain showed an excellent inhibitory activity to the pathogens for green molds such as T. harzianum, T. viride and T. hamatum and an animal pathogen, Candida albicans, but did not affect on the culture of Pleurotus ostreatus (2209, Chunchu 2 and Wonhyung strains). KATB 99121 strain secreted amylolytic, proteolytic and cellulolytic exoenzymes. KATB 99122 and KATB 99123 strains excreted amylolytic, proteolytic, cellulolytic, lipolytic exoenzymes and showed ${\beta}$-glucosidase activity. Further studies will be conducted on the development of microbial fungicides using the antagonistic bacteria for the control of green mold disease on Pleurotus spp.

Penicillium sp.-L4의 균성장 및 효소작용을 억제하는 $\beta$-glucosidase inhibitor의 분리 및 특성

  • Kim, Moo-Sung;Ha, Sung-Yoon;Jeon, Gi-Boong;Lim, Dal-Taek;Park, Byung-Hwa;Lee, Bo-Seop;Lee, Sang-Rin;Choi, Yong-Keel
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.189-196
    • /
    • 1997
  • A producer of inhibitor against ${\beta}-glucosidase$ of Penicillium sp.-L4 was screened from Actinomycetes, and the isolated strain was identified as Streptomyces sp. The inhibitor produced was very stable against heat, acidic and alkaline conditions, proteolytic and amylolytic enzymes. The inhibotor was purified from culture broth through activated carbon treatment, ultrafiltration, anion and cation exchange, activated carbon columm, acetone precipitation and preparative HPLC. It showed inhibitory activities against a variety of dissacharide hydrolyzing enzymes produced by P.sp.-L4, and the mode of inhibition was competitive. Its structure and molecular formular was elucidated by IR, $^1H\;and\;^{13}C$ NMR and FAB/Mass spectrometry, which was identified as 1-deoxynojirimycin (dNM). dNM showed inhibitory effects on the cell growth and hydrolytic enzyme action of P.sp.-L4 on agar plate and infected lemon peel.

  • PDF

Saccharification of Foodwastes Using Cellulolytic and Amylolytic Enzymes from Trichoderma harzianum FJ1 and Its Kinetics

  • Kim Kyoung-Cheol;Kim Si-Wouk;Kim Myong-Jun;Kim Seong-Jun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.52-59
    • /
    • 2005
  • The study was targeted to saccharify foodwastes with the cellulolytic and amylolytic enzymes obtained from culture supernatant of Trichoderma harzianum FJ1 and analyze the kinetics of the saccharification in order to enlarge the utilization in industrial application. T. harzianum FJ1 highly produced various cellulolytic (filter paperase 0.9, carboxymethyl cellulase 22.0, ${\beta}$-glucosidase 1.2, Avicelase 0.4, xylanase 30.8, as U/mL-supernatant) and amylolytic (${alpha}$-amylase 5.6, ${\beta}$-amylase 3.1, glucoamylase 2.6, as U/mL-supernatant) enzymes. The $23{\sim}98\;g/L$ of reducing sugars were obtained under various experimental conditions by changing FPase to between $0.2{\sim}0.6\;U/mL$ and foodwastes between $5{\sim}20\%$ (w/v), with fixed conditions at $50^{\circ}C$, pH 5.0, and 100 rpm for 24 h. As the enzymatic hydrolysis of foodwastes were performed in a heterogeneous solid-liquid reaction system, it was significantly influenced by enzyme and substrate concentrations used, where the pH and temperature were fixed at their experimental optima of 5.0 and $50^{\circ}C$, respectively. An empirical model was employed to simplify the kinetics of the saccharification reaction. The reducing sugars concentration (X, g/L) in the saccharification reaction was expressed by a power curve ($X=K{\cdot}t^n$) for the reaction time (t), where the coefficient, K and n. were related to functions of the enzymes concentrations (E) and foodwastes concentrations (S), as follow: $K=10.894{\cdot}Ln(E{\cdot}S^2)-56.768,\;n=0.0608{\cdot}(E/S)^{-0.2130}$. The kinetic developed to analyze the effective saccharification of foodwastes composed of complex organic compounds could adequately explain the cases under various saccharification conditions. The kinetics results would be available for reducing sugars production processes, with the reducing sugars obtained at a lower cost can be used as carbon and energy sources in various fermentation industries.

Influence of the Kilning Conditions on Enzymatic Activity of Rice (Oryza sativa) Malt

  • Nguyen, Thach Minh;Nguyen, Xich Lien;Hoang, Kim Anh;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.10-17
    • /
    • 2009
  • This study investigated the effect of kilning condfition on the diastatic power and activities of protease, $\alpha$-amylase, and $\beta$-amylase in rice malt. Common rice (Oryza sativa) was steeped at $30^{\circ}C$ for 50 h, germinated at $30^{\circ}C$ for 7 days, and kilned at $50^{\circ}C$ for 24 h. The moisture content and enzymatic activities were determined under various kilning times. As a result, the moisture content was reduced from 42.1 % to 3.9% after 24 h of kilning at $50^{\circ}C$. The protease activity of rice malt showed lower value than that of barley malt. All enzymatic activities were decreased during the kilning stage. Results indicated that after prolonged kilning at $50^{\circ}C$, the inactivation of hydrolytic enzymes might be occurred. Even though the amylolytic activity of malted rice showed low value, the rice malt shows the potential characteristics as ingredient for the brewing and cereal industries.

Protoplast fusion of Aspergillus oryzae (Aspergilluis oryzae의 원형질체 융합)

  • 이수연;이주실;이영록
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.216-220
    • /
    • 1989
  • As the bsic study about protoplast fusion of amylolytic fungus Aspergillus oryze and nonamyloytic sugar fermenter, Saccaromyces cerevsisae, the intraspecific protoplast fusion of A. oryzae was carried out and the properties of the obtained fusants were investigated. For protoplast fomation from mycellia of auxotrophs, Novozyme 234 as lytic enzyme was the most effective and optimal pH was determined to be pH 5.5-6.0. When the two types of protoplasts were treated with a fusogen including 30% PEG4000, they fused effectively and most of fusants were heterokaryons. Protoplasts aggregated with 30% PEG4000 after fusion treatment were observed by the microscope. Protoplast regeneration frequency was 1.46 to 13.8% and complementation frequency of fusion was 0.12 to 0.16. Fusant strains had a 1.5-fold DNA content compared to that of parent strain. And amylase activity was intermediate between those of parent strains.

  • PDF

Characterization of Achlya bisexualis $\beta$-Amylase Expression in an Amylolytic Industrial Strain of Saccharomyces cerevisiae (전분 분해성 산업용 Saccharomyces cerevisiae에서 Achlya bisexualis $\beta$-Amylase의 발현 특성 규명)

  • Lee, Ok-Hee;Lim, Mi-Hyeon;Kim, Ji-Hye;Ryu, Eun-Hye;Ko, Hyun-Mi;Chin, Jong-Eon;Bai, Suk
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.264-269
    • /
    • 2008
  • To develop an amylolytic industrial yeast strain producing $\beta$-amylase, the BAMY gene encoding Achlya bisexualis $\beta$-amylase was constitutively expressed under the control of the alcohol dehydrogenase gene promoter (ADC1p) in an industrial strain of Saccharomyces cerevisiae. Yeast transformation was carried out by an integration system containing $\delta$-sequences as the recombination site. The integrative cassette devoid of bacterial DNA sequences was constructed that contains the BAMY gene and $\delta$-sequences. Industrial S. cerevisiae transformed with this integrative cassette secreted 45 kDa $\beta$-amylase into the culture medium. The $\beta$-amylase activity of the transformant was approximately 18.5-times higher than that of A. bisexualis. The multi-integrated BAMY genes in the transform ant were stable after 100 generations of growth in nonselective medium. Hydrolysis of soluble starch and various starches with the enzyme released maltose but not glucose or oligosaccharides.

Cloning of Isoamylase Gene of Pectobacterium carotovorum subsp. carotovorum LY34 and Identification of Essential Residues of Enzyme (Pectobacterium carotovorum subsp. carotovorum LY34에서 Lsoamylase 유전자 클로닝 및 효소 활성의 필수 잔기 확인)

  • Cho, Kye-Man;Kim, Eun-Ju;Math, Renukaradhya K.;Asraful Islam, Shah Md.;Hong, Sun-Joo;Kim, Jong-Ok;Shin, Ki-Jae;Lee, Young-Han;Kim, Hoon;Yun, Han-Dae
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1182-1190
    • /
    • 2007
  • The gene encoding for isoamylase of the Pectobacterium carotovorum subsp. carotovorum (Pcc) LY34 was cloned and expressed into Escherichia coli $DH5{\alpha}$. Isoamylase catalyzes the hydrolysis of ${\alpha}-1,6-glycosidic$ linkages specifically in amylopectin, glycogen, and derived oligosaccharides, while the enzyme did not hydrolyze ${\alpha}-1,4-glycosidic$ linkages of amylose. The isoamylase gene (glgX) had an open reading frame of 1,977 bp encoding 658 amino acid residues with a calculated molecular weight of 74,188 Da. The molecular weight of the enzyme was also estimated to be 74 kDa by activity staining of a SDS-PA gel. The mature GlgX had a calculated pI of 4.91. Isoamylase from Pcc LY34 had 70% amino acid identity with isoamylase from Pectobacterium chrysanthemi and contained the four regions conserved among all amylolytic enzymes. The isoamylase was optimally active at pH 7.0 and $40^{\circ}C$. GlgX was $Ca^{2+}-dependent$. The changes of Asp-335, Glu-370, and Asp-442 into Ala, respectively, using site-directed mutagenesis techniques showed that three residues are essential to isolamyalse (GlgX) activity. The sequences around those residues were highly conserved in isoamylase of different origins and GlgX of the glg operon in glycongen biosynthesis.

Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages

  • Ning, Tingting;Wang, Huili;Zheng, Mingli;Niu, Dongze;Zuo, Sasa;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.171-180
    • /
    • 2017
  • Objective: This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR) silage. Methods: The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR) or Leymus chinensis hay (LTMR), corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Results: Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens (B. amyloliquefaciens), B. cereus, B. licheniformis, and B. subtilis in ATMR silage and B. flexus, B. licheniformis, and Paenibacillus xylanexedens (P. xylanexedens) in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens, B. licheniformis, and B. subtilis and B. licheniformis, B. pumilus, and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. Conclusion: The microbial amylase contributes to starch hydrolysis during the ensiling process in both TMR silages, whereas the microbial hemicellulase participates in the hemicellulose degradation only at the early stage of ensiling.