Browse > Article
http://dx.doi.org/10.4014/jmb.1002.02005

A New Protein of ${\alpha}$-Amylase Activity from Lactococcus lactis  

Wasko, Adam (Department of Biotechnology, Human Nutrition and Food Commodities, University of Life Sciences in Lublin)
Polak-Berecka, Magdalena (Department of Biotechnology, Human Nutrition and Food Commodities, University of Life Sciences in Lublin)
Targonski, Zdzislaw (Department of Biotechnology, Human Nutrition and Food Commodities, University of Life Sciences in Lublin)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.9, 2010 , pp. 1307-1313 More about this Journal
Abstract
An extracellular ${\alpha}$-amylase from Lactococcus lactis IBB500 was purified and characterized. The optimum conditions for the enzyme activity were a pH of 4.5, temperature of $35^{\circ}C$, and enzyme molecular mass of 121 kDa. The genome analysis and a plasmid curing experiment indicated that $amy^+$ genes were located in a plasmid of 30 kb. An analysis of the phylogenetic relationships strongly supported a hypothesis of horizontal gene transfer. A strong homology was found for the peptides with the sequence of ${\alpha}$-amylases from Ralstonia pikettii and Ralstonia solanacearum. The protein with ${\alpha}$-amylase activity purified in this study is the first one described for the Lactococcus lactis species, and this paper is the first report on a Lactococcus lactis strain belonging to the amylolytic lactic acid bacteria (ALAB).
Keywords
${\alpha}$-Amylase; ALAB; Lactococcus lactis; gene transfer; evolutionary origin;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Rodriguez, R. S., J. Morlon-Guyot, J. Jore, J. Pintado, N. Juge, and J. P. Guyot. 2000. Comparative characterization of complete and truncated forms of Lactobacillus amylovorus $\alpha$-amylase and role of the C-terminal direct repeats in raw-starch binding. Appl. Environ. Microbiol. 66: 3350-3356.   DOI
2 Nakamura, L. K. 1981. Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste corn fermentation. Int. J. Syst. Bacteriol. 31: 56-63.   DOI
3 Nakamura, L. K. and C. D. Crowell. 1979. Lactobacillus amylovorus, a new starch-hydrolyzing species from swine waste-corn fermentation. Dev. Ind. Microbiol. 20: 535-540.
4 Nakamura, Y., T. Itoh, H. Matsuda, and T. Gojobori. 2004. Biased biological funcions of horizontal transfer red genes in prokaryotic genomes. Nature Genet. 36: 760-766.   DOI   ScienceOn
5 Nwankwo, D., E. Anadu, and R. Usoro. 1989. Cassava fermenting organisms. Mirccn J. Appl. Microbiol. 5: 169-179.   DOI
6 Lindgren, S. and O. Refai. 1983. Amylolytic lactic acid bacteria in fish silage. J. Appl. Bacteriol. 57: 221-228.
7 Mesas, J. M., M. C. Rodriguez, and M. T. Alegre. 2004. Plasmid curing of Oenococcus oeni. Plasmid 51: 37-40.   DOI   ScienceOn
8 Lacks, S. A. and S. S. Springhorn. 1980. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. J. Biol. Chem. 15: 7467-7473.
9 Morlon-Guyot, J., J. P. Guyot, B. Pot, I. Jacobe de Haut, and M. Rimbault. 1998. Lactobacillus manihotivorans sp. nov., a new starch-hydrolyzing lactic acid bacterium isolated from cassava sour starch fermentation. Int. J. Syst. Bacteriol. 48: 1101-1109.   DOI   ScienceOn
10 Moseley, M. H. and L. Keay. 1970. Purification and characterisation of the amylase of B. subtilis NRRL B3411. Biotechnol. Bioeng. 12: 251-271.   DOI   ScienceOn
11 Doman-Pytka, M., P. Renault, and J. Bardowski. 2004. Gene-cassette for adaptation of Lactococcus lactis to a plant environment. Lait 84: 33-37.   DOI   ScienceOn
12 Laemmli, U. K. 1970. Cleavage of structural proteins during the asseambly of the head of bacteriophage $T_4$. Nature 227: 680-685.   DOI   ScienceOn
13 Imam, S. H., A. Burgess-Cassler, G. L. Cote, S. H. Gordon, and F. L. Baker. 1991. A study of cornstarch granule digestion by an unusually high molecular weight alpha-amylase secreted by Lactobacillus amylovorus. Curr. Microbiol. 22: 365-370.   DOI
14 Imanaka, T. and T. Kuriki. 1989. Pattern of action of Bacillus stearothermophilus neopullulanase on pullulan. J. Bacteriol. 171: 369-374.   DOI
15 Kuriki, T. and T. Imanaka. 1999. The concept of the $\alpha$-amylase family: Structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 87: 557-565.   DOI   ScienceOn
16 Guyot, J. P., M. A. Brizuela, R. Rodriguez Sanoja, and J. Morlon-Guyot. 2003. Characterization and differentiation of Lactobacillus manihotivorans strains isolated from cassava sour starch. Int. J. Food Microbiol. 87: 187-192.   DOI   ScienceOn
17 Eom, H.-J., J.-S. Moon, E.-J. Seo, and N. S. Han. 2009. Heterologous expression and secretion of Lactobacillus amylovorus $\alpha$-amylase in Leuconostoc citreum. Biotechnol. Lett. 31: 1783-1788.   DOI   ScienceOn
18 Giraud, E. and G. Cuny. 1997. Molecular characterization of the $\alpha$-amylase genes of Lactobacillus plantarum A6 and Lactobacillus amylovorus reveals an unusual 3' end structure with direct tandem repeats and suggests a common evolutionary origin. Gene 198: 149-157.   DOI   ScienceOn
19 Glazer, A. N. and H. Nikado. 1994. Microbial Biotechnology. W. H. Freeman and Co., New York, N. Y.
20 Fitzsimons, A., P. Hols, J. Jore, R. I. Leer, M. O'Connell, and J. Delcour. 1994. Development of an amylolytic Lactobacillus plantarum silage strain expressing the Lactobacillus amylovorus $\alpha$-amylase gene. Appl. Environ. Microbiol. 60: 3529-3535.
21 Vihinen, M. and P. Mantsala. 1989. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24: 329-418.   DOI   ScienceOn
22 Fall, S., A. Mercier, F. Bertolla, A. Calteau, L. Gueguen, G. Perriere, T. M. Vogel, and P. Simonet. 2007. Horizontal gene transfer regulation in bacteria as a "spandrel" of DNA repair mechanisms. PLoS ONE 10: e1055.
23 Champ, M., O. Szylit, P. Raibaud, and N. Ait-Abdelkader. 1983. Amylase production by three Lactobacillus strains isolated from chicken crop. J. Appl. Bacteriol. 55: 487-493.   DOI
24 Burgess-Cassler, A. and P. A. Imam. 1991. Partial purification and comparative characterization of alpha-amylase secreted by Lactobacillus amylovorus. Curr. Microbiol. 23: 207-213.   DOI
25 Bohak, I., W. Back, L. Richter, M. Eirman, W. Ludwig, and K. H. Schleifer. 1998. Lactobacillus amylolyticus sp. nov. isolated from beer malt and beer wort. Syst. Appl. Microbiol. 21: 360-364.   DOI   ScienceOn
26 Burges-Casler, A., S. Imam, and M. Gould. 1992. High-molecular-weight amylase activities from bacteria degrading starch-plastic films. Appl. Environ. Microbiol. 57: 612-614.
27 Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI - BLAST: A new generation of protein database search programs. Nucleic Acid Res. 25: 3389-3402.   DOI
28 Bardowski, J., S. D. Ehrlich, and A. Chopin. 1992. Tryptophan biosynthesis genes in Lactococcus lactis ssp. lactis. J. Bacteriol. 174: 63-65.   DOI
29 Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.   DOI
30 Van der Maarel, M. J., B. Van der Veen, J. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the $\alpha$-amylase family. J. Biotechnol. 94: 137-155.   DOI   ScienceOn
31 Sen, S. and S. L. Chakrabarty. 1986. Amylase from Lactobacillus cellobiosus D-39 isolated from vegetable wastes; purification and characterization. J. Appl. Bacteriol. 60: 419-423.   DOI
32 Agati, V., J. P. Guyot, J. Morlon-Guyot, P. Talamond, and D. J. Hounhouigan. 1998. Isolation and characterization of new amylolytic strains of Lactobacillus fermentum from fermented maize doughs (mawe and ogi) from Benin. J. Appl. Microbiol. 85: 512-520.   DOI   ScienceOn
33 Salminen, S., M. A. Deighton, Y. Benno, and S. L. Gorbach. 1998. Lactic acid bacteria in health and disease, pp. 211-253. In S. Salminen and A. von Wright (eds.). Lactic Acid Bacteria Microbiology and Functional Aspects. Marcel Dekker, Inc., New York.
34 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
35 Sanni, A. I., J. Morlon-Guyot, and J. P. Guyot. 2002. New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different Nigerian traditional fermented foods. Int. J. Food Microbiol. 72: 53-62.   DOI   ScienceOn
36 Satoh, E., T. Uchimura, T. Kudo, and K. Kamagata. 1997. Purification, characterization, and nucleotide sequence of an intracellular maltotriose-producing $\alpha$-amylase from Streptococcus bovis 148. Appl. Environ. Microbiol. 63: 4941-4944.
37 Petrov, K., Z. Urshev, and P. Petrova. 2008. L(+)-Lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84. Food Microbiol. 25: 550-557.   DOI   ScienceOn
38 Ohdan, K., T. Kuriki, H. Kaneko, J. Shimada, T. Takada, Z Fujimoto, H. Mizuno, and S. Okada. 1999. Characteristic of two forms of $\alpha$-amylases and structural implication. Appl. Environ. Microbiol. 65: 4652-4658.
39 Olympia, M., H. Fukuda, H. Ono, Y. Kaneko, and M. Takano. 1995. Characterization of starch-hydrolyzing lactic acid bacteria isolated from a fermented fish and rice food, "Burong Isda," and its amylolytic enzyme. J. Ferment. Bioeng. 80: 124-130.   DOI   ScienceOn
40 Paquet, V., C. Croux, G. Goma, and P. Soucaille. 1991. Purification and characterization of $\alpha$-amylase from Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 57: 212-218.
41 Pompeyo, C. C., M. Suarez Gomez, S. Gasparian, and J. Morlon-Guyot. 1993. Comparison of amylolytic properties of Lactobacillus amylovorus and of Lactobacillus amylophilus. Appl. Mocrobiol. Biotechnol. 40: 266-269.