• Title/Summary/Keyword: amylogram

Search Result 172, Processing Time 0.029 seconds

Influence of Low Temperature at Reproductive Stage on Rice Grain Quality (생식생장기 저온이 미질에 미치는 영향)

  • Jeong, Eung-Gi;Choi, Hae-Chune;Hong, Ha-Cheol;Moon, Huhn-Pal;Shin, Young-Beom
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.805-809
    • /
    • 1997
  • The influence of cool temperature occurred during the booting stage in 1993 on quality of rice grain was compared with that in favorable weather of 1994. The mean and minimum air temperatures during the reproductive growth stage at the paddy field of Jinbu Substation, National Crop Experiment Station were 2.2~7.4$^{\circ}C$ and 2.0~8.9$^{\circ}C$ lower respectively in 1993 compared to those of 1994. Grain fertility and brown rice yield were 11.8% and 0.4t /ha, and 84.3% and 5.5t /ha in 1993 and 1994, respectively. There was no difference in amylose content between two years. However, protein content of brown rice in 1994 were 1.6% lower than that of 1993. There was no difference in alkali digestion value of milled rice between two years. Gel consistency of rice flour was 45mm in 1993 and 59mm in 1994. Amylogram characteristics of rice flour produced in 1993 showed lower peak hot, cool, and breakdown viscosities, and higher consistency and setback viscosities. The palatability of cooked rice by sensory panel test was considerably better in 1994 rice than in the rice of cool year.

  • PDF

Effects of Storage Form and Period of Refrigerated Rice on Sensory Properties of Cooked Rice and on Physicochemical Properties of Milled and Cooked Rice (냉장 쌀의 저장 형태 및 기간에 따른 쌀밥의 관능적 특성)

  • Lee, Ju-Hyun;Kim, Sang-Sook;Suh, Dong-Soon;Kim, Kwang-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.427-436
    • /
    • 2001
  • The effects of storage form (paddy and milled rice) and storage period (1, 2, and 3 years) of rice at low temperature $(4^{\circ}C)$ on physicochemical properties of milled and cooked rice and sensory characteristics of cooked rice were investigated. The proximate compositions except moisture content of rice decreased as the storage period increased. Water binding capacity, solubility and swelling power of rice flour decreased with the extended storage period. In the amylogram, the initial pasting temperature, paste viscosity and breakdown of paddy rice flour slurry decreased after 2 years of storage. Moisture content of cooked rice increased while the amount of water evaporated during cooking decreased. These trends were obvious with the longer storage period. Lightness and yellowness of cooked rice were greatly changed after 3 years of storage, regardless of storage form. Texture profile analysis of cooked rice by Texture Analyzer revealed that hardness, fracturability, gumminess were gradually increased while adhesiveness decreased as the storage period of rice increased. A trained panel found that color intensity, intactness of grains, rancid flavor, rice bran flavor, wet cardboard flavor, hardness and chewiness of cooked rice increased with the longer storage period. However, glossiness, transparency, plumpness, puffed corn flavor, dairy flavor, boiled egg white flavor, sweet taste, adhesiveness to lips, smoothness and inner moisture decreased with the extended storage period up to 3 years. Instrumental hardness was highly correlated with sensory hardness.

  • PDF

Physicochemical Characteristics and Varietal Improvement Related to Palatability of Cooked Rice or Suitability to Food Processing in Rice (쌀 식미 및 가공적성에 관련된 이화학적 특성)

  • 최해춘
    • Proceedings of the Korean Journal of Food and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.39-74
    • /
    • 2001
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s∼1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great, progress and success was obtained in development of high-quality japonica cultivars and qualify evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice caltivars and special rices adaptable for food processing such as large kernel, chalky endosperm aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and torture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak. hot paste and consistency viscosities of viscogram with year difference. The high-quality rice variety “Ilpumbyeo” showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic mcroscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high Probability of determination. The ${\alpha}$ -amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were Ilpumbyeo, Chucheongbyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tongil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, shelved the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogiadation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice bread. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large gram rices showed better suitability for fermentation and brewing. Our breeding efforts on rice quality improvement for the future should focus on enhancement of palatability of cooked rice and marketing qualify as well as the diversification in morphological and physicochemical characteristics of rice grain for various value-added rice food processings.

  • PDF

Effect of Mushroom (Lentinus Tuber-Regium) Powder on the Bread Making Properties of Wheat Flour (버섯(Lentinus Tuber-Regium)분말 첨가가 제빵 특성에 미치는 영향)

  • Lee, Min-Jeong;Kyung, Kyu-Hang;Chang, Hak-Gil
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.32-37
    • /
    • 2004
  • Effects of mushroom powder on physicochemical characteristics of dough and bread-making properties were studied. In mixogram test, addition of 2-10% mushroom powder increased water absorption from 67,0 to 79%. Peak time, peak height, band width, and seven minute height of mushroom-wheat flour composite were similar to those of control. Sedimentation and P.K. values decreased with increasing amount of mushroom powder In amylogram test, no significant difference was observed in gelatinization temperature between control and mushroom powder-added dough. Peak viscosity increased with increasing amount of mushroom powder, Highest loaf volume was attained when 2 and 4% mushroom powders were added, whereas decreased above 6%. Bread weight and L value of crust increased with increasing amount of mushroom powder whereas 'a' value decreased. As the amount of mushroom powder increased, L value of crumb color decreased. No significant difference in springiness and adhesiveness was observed between control and mushroom-wheat composite flour bread whereas chewiness and gumminess, increased with increasing amount of mushroom powder, Hardness generally increased as the amount of mushroom powder increased. Mushroom powder caused bread staling at both storage temperatures ($4^{\circ}C\;and\;25^{\circ}C$). Although sensory value decreased with increasing mushroom powder, use of mushroom powder to replace up to 4% wheat flour is recommended in making bread.

Effects of hydrocolloids on wheat flour rheology (Hydrocolloid의 첨가가 밀가루 반죽의 특성에 미치는 영향)

  • 임경숙;황인경
    • Korean journal of food and cookery science
    • /
    • v.15 no.3
    • /
    • pp.203-209
    • /
    • 1999
  • The effect of several hydrocolloids on the rheological behavior of wheat flour was investigated. The influence of the selected hydrocolloids (alginate, carrageenan, CMC, guar, locustbean and xanthan) on wheat flour was tested by using two different techniques; amylograph and texture analyzer. In order to have a general overview of their effects hydrocolloids were chosen from different sources implying a broad diversity of chemical structures. The hydrocolloid addition decreased the brightness(L) but increased yellowness(b). The interaction between hydrocolloid and flour produces a slight modification of the amylogram parameters, being the most clearly affected parameter breakdown, which is increased by carrageenan, guar and xanthan. Hardness and cutting force were augmented by hydrocolloid addition, while springeness was decreased except guar and locustbean. In summary, when looking for the improvement of the noodle texture, guar, locustbean are the best candidate additives due to their effects on pasting and texture properties. These hydrocolloids increase the hardness, cutting force, gumness, chew-ness, so were thought to increase the eating quality. So, each tested hydrocolloid affected in a different way the rheological properties of wheat flour, the results obtained are important for the appropriate use of these hydrocolloid as ingredients in the noodle making process.

  • PDF

Variation of Grain Quality of Rice Varieties Grown at Different Locations I. Locational Variation of Quality-related Characteristics of Rice Grain (벼품종의 재배지역에 따른 미질특성변이 I. 미질특성의 지역변이)

  • Kwang-Ho Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.1
    • /
    • pp.34-43
    • /
    • 1990
  • Six commerical rice varieties were cultivated and harvested at different locations in 1987 and 1988 to clarify the degree of locational variations. of several characteristics related to rice grain quality using the rice samples harvested from 8 to 20 locations for a variety each year. Locational variations of percent brown rice, percent milled rice, 1000-grain weight and amylose content were small, but whole grain rate, alkali digestibility, gel consistency, percent white-center and white-belly grain, degree of chalkiness and degree of translucency showed larger variations between locations. The degree of locational variation of sensory evaluation score for eating quality of cooked rice were varied from small to large along with rice variety used and year cultivated. Texture palatability index and stickiness of cooked rice among rheogram characteristics showed larger locational variations, but cohesiveness and springiness showed smaller variations between locations. Set back, break down and maximum viscosity showed larger locational variations among amylogram characteristics of rice flour. Special attention was given to a cultivated location, Anseong, because rice samples harvested at Anseong showed lower percent white-center and white-belly grain, and low set back and high break down in Chucheongbyeo, lower percent white-center and white-belly grain, higher texture palatability index and viscousness/hardness ratio, and low set back and high break down in Dongjinbyeo, higher texture palatability index, and low set back and high break down in Yongmunbyeo, lower percent white-center and white-belly grain in Sangpungbyeo, and low set back and high break down in Samkangbyeo. No other locations in this study produced rice samples showing wide acceptable quality-related characteristics except Anseong.

  • PDF

Quality Characteristics of Sponge Cake with Addition of Protease (단백질가수분해효소를 첨가한 스펀지케이크의 품질 특성)

  • Yoon, Seongjun;Cho, Namji;Moon, Sung-Won;Kim, Misook;Lee, Youngseung;Yoon, Ok Hyun;Jeong, Yoonhwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.761-766
    • /
    • 2015
  • This study investigated the effect of protease on quality characteristics of sponge cake. Protease was used at levels of 0.0005 U (PC-1), 0.0010 U (PC-2), 0.0015 U (PC-3), and 0.0020 U (PC-4) for sponge cake preparation. Amylogram showed the setback was significantly decreased in comparison with the control (P<0.05). Height and baking loss rate of control sponge cake were $4.24{\pm}0.18cm$ and $12.01{\pm}0.29%$, respectively. PC-3 and PC-4 showed increased heights of $5.22{\pm}0.16$ and $5.24{\pm}0.11cm$ as well as slightly increased baking loss rates of $12.71{\pm}0.31%$ and $12.89{\pm}0.61%$, respectively. Specific volume and color difference measurements of control showed a specific volume of $3.53{\pm}0.06mL/g$, crust color difference of $53.05{\pm}0.28$, and crumb color difference of $29.84{\pm}0.52$. Measurements of specific volume, crust color, and crumb color of PC-3 and PC-4 were $4.18{\pm}0.02mL/g$, $56.19{\pm}0.84$, $29.05{\pm}0.43$, $4.21{\pm}0.02mL/g$, $56.85{\pm}0.43$, and $29.45{\pm}0.47$, respectively. Firmness measurements showed that the control had the highest firmness. PC-3 and PC-4 were effective at improving the shelf-life of sponge cake as indicated by reduced firmness. Sensory evaluation results demonstrated that all samples scored higher than the control. Throughout the results, the addition of protease increased volume and improved quality characteristics of sponge cake.

Physicochemical Properties of Several Korean Yam Starches (한국산 마전분의 이화학적 특성)

  • Kim, Wha-Sun;Kim, Sang-Soon;Park, Yong-Kon;Seog, Ho-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.554-560
    • /
    • 1991
  • The physicochemical properties of Korean yam starches (D. aimadoimo, D. batatas and D. japonica) were investigated. The mean granular size of starches were 23.5 μm for D. aimadoimo, 23.9 μm for D. batatas and 18.2 μm for D. japonica. Amylose content, blue value and water binding capacity was $29{\sim}33%,\;0.42{\sim}0.51%\;and\;109.9{\sim}118.3%$, respectively. The optical transmittance of 0.3% (dry basis) yam starch suspensions were increased at $70{\sim}75^{\circ}C$ and D. japonica showed typical two-step transmittance curve. The swelling power and solubility patterns increased over $60^{\circ}C$, and D. aimadoimo was the highest values. Amylogram patterns of 5% (dry basis) yam starch suspensions, determined by Brabender amylograph, were similar to that of yam flours and the viscosity of D. aimadoimo had 630 BU, which was about 5 times higher than 130 BU for D. batatas and D. japonica. Observation under scanning electron microscope lefted marks of resistance to glucoamylase because these surfaces were similar to the natural granules. In rates of solubiliazation by dimethyl sulfoxide, D. aimadoimo showed the highest value. (3-Amylolysis limits of yam starches and their amylose were $71.8%{\sim}75.5%\;and\;90.2{\sim}92.1%$, respectively. Gel filtration patterns of debranched amylopectin by pullulanase were divided into 3 peaks. The weight ratios of peak III to peak II in yam starches were $2.15%{\sim}2.42%$.

  • PDF

Quality Characteristics of Pound Cake with Citrus mandarin Powder during Storage (감귤 분말을 첨가한 파운드케이크의 저장 중 품질 특성)

  • Park, Yeong-Sun;Shin, Sol;Shin, Gil-Man
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.6
    • /
    • pp.1022-1031
    • /
    • 2008
  • Pound cakes were prepared with Citrus mandarin powder(CMP) cultivated in JeJu Island, Korea. The impact of CMP amount level, which was incorporated into wheat flour by the ration of 0, 5, 10, 15, and 20% based on a flour weight, on the rheology and sensory profile of the pound cakes was measured. Moisture content of 13.70%, crude protein 5.12%, crude lipid 1.30%, crud ash 1.92%, respectively. Also evaluation was performed on the changes in physicochemical properties of the pound cakes during storage at 4 and $30^{\circ}C$. According to the amylogram, gelatinization temperature of the control dough was $63.35^{\circ}C$ and those of the dough with CMP were $63.85{\sim}66.55^{\circ}C$. Maximum viscosity of the dough was 686 B.U in the control, those were 575 B.U, 553 B.U, 504 B.U and 401 B.U in the dough with 5, 10, 15, and 20% CMP, respectively. The retrogradation degree(setback value) of CMP dough was $31{\sim}57%$ lower than that of the control dough under the same conditions. Water holding capacity of pound cake was increased gradually in proportion to the amount of CMP. The CMP addition decreased the brightuess(L) of pound cakes but increased redness(a) and yellowness(b). Hardness of pound cakes was significantly increased by CMP addition, while springiness, adhesiveness and cohesiveness were decreased. Based on sensory evaluation, pound cakes added with CMP were not significantly different in color and texture, while that of 10% CMP was significantly high in taste, flavor, and overall preferences, compared to the control. pH of pound cake with CMP was decreased during storage, showing that pH of CMP samples was lower than the control. Titrated acidity of pound cake with CMP was increased rapidly from storage for 10 days, which the changes in degree was fast in accordance with CMP amount. The Hunter's color value of pound cake with CMP was decreased, as the storage time proceeded. In the samples prepared with CMP, the firmness, adhesiveness, gumminess and chewiness was increased as the storage time proceeded, while springiness and cohesiveness was decreased.

  • PDF

Effect of Various Mixing Ratio of Non-glutinous and Glutinous Rice on Physical and Rheological Properties of Extrudate (멥쌀과 찹쌀의 혼합비율별 압출성형물의 물리적 성질 및 유동특성)

  • Kum, Jun-Seok;Kwon, Sang-Oh;Lee, Hyun-Yu;Lee, Sang-Hyo;Jung, Jin-Hyub;Kim, Jun-Pyong
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.442-447
    • /
    • 1994
  • Effect of different mixing ratio of non-glutinous and glutinous rice on physical and rheological properties of extrudate prepared in a single screw extruder were examined. The extrusion conditions in term of screw speeds, moisture content and die temperature were 258 rpm, 18% and $120^{\circ}C$, respectively. The resisdence time distribution of the most of materials were within 30 second and small portion of them went up to 80 second. The expansion ratio was the highest value (2.93) for 70% of glutinous rice in the mixture, while the lowest value for 100% of non-glutinous rice. Breaking strength was in the range between 1,051g and 1,117g for $10{\sim}20%$ of glutinous rice in the mixture, while the lowest value (737g) for 80%r of glutinous rice. As the amount of glutinous rice increased, L and a values were increased and b value was decreased. The uncooked cold paste viscosity had 400 B.U. for 100% non-glutinous rice , while no peak for the 100% glutinous rice. As the amount of glutinous rice increased up to 100%, the water absorption index (WAI) was decreased, while water solubility index (WSI) was increased. The rheological properties of extrudate were accounted by the law of Oswald. The flow behavior index of extrudate was less than 1.0, which showed pseudoplastic behavior. Yield stress was the highest value for 20% of glutinous rice in the mixture and the lowest value for $80{\sim}100%$ of glutinous; rice. Number of air cell was between 128 and 159 for $80{\sim}100%$ of glutinous rice in the mixture, while $81{\sim}84%$ for $0{\sim}20%$ of glutinous rice. The degree of shapefact was increased more when the mixtures of glutinous and non-glutinous rice was used than when glutinous or non-glutinous rice was only used.

  • PDF