• Title/Summary/Keyword: amplitude-comparison

Search Result 426, Processing Time 0.023 seconds

Changes in Nerve Excitability During Neural Stretching (신경 신장 적용 시간에 따른 신경흥분성 변화)

  • Lee, Dong-Rour;Rhee, Min-Hyung;Eom, Ju-Ri;Kim, Jong-Soon
    • PNF and Movement
    • /
    • v.16 no.2
    • /
    • pp.287-294
    • /
    • 2018
  • Purpose: The neurodynamic test used to implicate symptoms arising from the nerve is proposed to selectively increase the strain of the nerve without increasing the strain of adjacent tissue, although this has not yet been established in the time of nerve tension application. This study aimed to investigate the acute effects of nerve stretching time on nerve excitability using compound nerve action potential (CNAP) analysis. Methods: Thirty healthy young adults (mean age=23.10 years) with no medical history of neurological or musculoskeletal disorder voluntarily participated in this study. Nerve excitability was assessed using the median nerve conduction velocity test. The amplitude of the CNAP was measured under three conditions: resting phase (supra-maximal stimulus, without nerve stretching), baseline phase (two-thirds of the supra-maximal stimulus, without nerve stretching), and stretch phase (two-thirds of the supra-maximal stimulus, with 1-5 minutes nerve stretching). One-way repeated measures ANOVA was conducted to compare the latency and amplitude of CNAP. A post-hoc test was analyzed using the contrast test. Results: The latency was significantly delayed after 1 min. of nerve stretching in comparison with the baseline test. However, no significant difference was found during the nerve stretching (1-5 min.). The amplitude was significantly increased by nerve stretching. Conclusion: Nerve stretching can induce nerve excitability without any nerve injury. Based on the results, more than 1 min. of nerve stretching as a neurodynamic test can be a useful method in the clinical setting.

HORIZON RUN 4 SIMULATION: COUPLED EVOLUTION OF GALAXIES AND LARGE-SCALE STRUCTURES OF THE UNIVERSE

  • KIM, JUHAN;PARK, CHANGBOM;L'HUILLIER, BENJAMIN;HONG, SUNGWOOK E.
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.4
    • /
    • pp.213-228
    • /
    • 2015
  • The Horizon Run 4 is a cosmological N-body simulation designed for the study of coupled evolution between galaxies and large-scale structures of the Universe, and for the test of galaxy formation models. Using 63003 gravitating particles in a cubic box of Lbox = 3150 h−1Mpc, we build a dense forest of halo merger trees to trace the halo merger history with a halo mass resolution scale down to Ms = 2.7 × 1011h−1M. We build a set of particle and halo data, which can serve as testbeds for comparison of cosmological models and gravitational theories with observations. We find that the FoF halo mass function shows a substantial deviation from the universal form with tangible redshift evolution of amplitude and shape. At higher redshifts, the amplitude of the mass function is lower, and the functional form is shifted toward larger values of ln(1/σ). We also find that the baryonic acoustic oscillation feature in the two-point correlation function of mock galaxies becomes broader with a peak position moving to smaller scales and the peak amplitude decreasing for increasing directional cosine μ compared to the linear predictions. From the halo merger trees built from halo data at 75 redshifts, we measure the half-mass epoch of halos and find that less massive halos tend to reach half of their current mass at higher redshifts. Simulation outputs including snapshot data, past lightcone space data, and halo merger data are available at http://sdss.kias.re.kr/astro/Horizon-Run4.

SgrA* 22GHz KaVA(+TAK) observation and its Amplitude Calibration

  • CHO, ILJE;JUNG, TAEHYUN;ZHAO, GUANG-YAO;KINO, MOTOKI;SOHN, BONGWON
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.52.2-52.2
    • /
    • 2015
  • SgrA* located in the center of the Milky Way is of great interest to understand the physics of supermassive black hole(SMBH) and the interaction of the G2 cloud around SgrA* with the accretion flow which was expected since 2013. In order to seize this rare opportunity, KVN and VERA Array (so called, KaVA) has started an intensive monitoring program of SgrA* at 22/43 GHz where scatter broadening is reduced compared to lower frequency VLBI observations. We present the results of KaVA SgrA* observation together with Takahagi (32m) and Yamaguchi (32m) telescopes at 22 GHz on March 24, 2013. We have tested both a standard amplitude calibration methods using the Tsys and antenna gain information and a template amplitude calibration method which uses a peak of H2O maser line of nearby maser source (SgrB2), and found that the latter method is useful when an accuracy of Tsys measurement or antenna gain of a telescope is poor. In our comparison, the difference between the two methods is around 20% (~5% for the KVN and ~15% for the VERA when the elevation is above $20^{\circ}$). We also imaged SgrA* with a total flux of ~0.7 Jy at 22GHz, and fitted an elliptical Gaussian model which has a size of ~2.5mas for major axis and ~1.7mas for minor axis, respectively.

  • PDF

Signal Processing Algorithm to Reduce RWR Electro-Magnetic Interference with Tail Rotor Blade of Helicopter

  • Im, Hyo-Bin;Go, Eun-Kyoung;Jeong, Un-Seob;Lyu, Si-Chan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.117-124
    • /
    • 2009
  • In the environment where various and complicated threat signals exist, RWR (Radar Warning Receiver), which can warn pilot of the existence of threats, has long been a necessary electronic warfare (EW) system to improve survivability of aircraft. The angle of arrival (AOA) information, the most reliable sorting parameter in the RWR, is measured by means of four-quadrant amplitude comparison direction finding (DF) technique. Each of four antennas (usually spiral antenna) of DF unit covers one of four quadrant zones, with 90 degrees apart with nearby antenna. According to the location of antenna installed in helicopter, RWR is subject to signal loss and interference by helicopter body and structures including tail bumper, rotor blade, and so on, causing a difficulty of detecting hostile emitters. In this paper, the performance degradation caused by signal interference by tail rotor blades has been estimated by measuring amplitude video signals into which RWR converts RF signals in case a part of antenna is screened by real tail rotor blade in anechoic chamber. The results show that corruption of pulse amplitude (PA) is main cause of DF error. We have proposed two algorithms for resolving the interference by tail rotor blades as below: First, expand the AOA group range for pulse grouping at the first signal analysis phase. Second, merge each of pulse trains with the other, that signal parameter except PRI and AOA is similar, after the first signal analysis phase. The presented method makes it possible to use RWR by reducing interference caused by blade screening in case antenna is screened by tail rotor blades.

Comparison of Signal Powers Generated with Metal Hammer Plate and Plastic Hammer Plate (금속 및 플라스틱 재질의 해머 타격판에 의해 발생된 신호의 파워 비교)

  • Kim, Jin-Hoo;Lee, Young-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.282-288
    • /
    • 2011
  • One of the most challenging issues facing shallow seismic survey is how to generate large amplitude of high frequency signal with small seismic sources. We tested the performance of the most commonly used shallow seismic source, hammer, with four plates: PE, nylon, aluminum, and steel plates. We compared their signal powers in terms of impulsive forces, accelerations, and ground vibration velocities caused by hammer impacts. According to a previous work, hammer blowing to an aluminum plate would generate the largest amplitude among four combinations. However, it was found in this experimental research that aluminum plate delivers seismic wave energy to the ground less than that generated with steel or PE plate. Even though the amplitude is relatively small, plastic plates could provide seismic pulses of 180 ~ 200 Hz in the bandwidth, and it seems to be very hard to generate seismic energy over the frequency of 250 Hz.

A Study of Visual Event-Related Potential P300 in Schizophrenia (정신분열병의 시각자극 사건유발전위 P300에 대한 연구)

  • Oh, Dong-Hoon;Nam, Jung-Hyun;Ahn, Dong-Hyun;Kim, Seok-Hyun;Choi, Joon-Ho
    • Korean Journal of Biological Psychiatry
    • /
    • v.11 no.1
    • /
    • pp.40-48
    • /
    • 2004
  • Objective:Event-related potentials(ERPs) are electrical changes recorded at the surface of the scalp in response to stimulus presentation, and their latency and amplitude change according to cognitive processes. Through past studies of the auditory ERP in schizophrenia, the P300 has been reported to be statistically smaller and delayed in schizophrenia than comparison groups. However, studies of the visual ERP have not been systematically examined. The present study was designed to investigate the visual P300 in patients with schizophrenia and normal controls and to compare the pattern of P300 between them. Methods:The subjects were composed of patients(N=22) with schizophrenia by DSM-IV and normal controls(N=22). The visual ERPs were measured by the visual continuous performance test. P300 amplitude and latency measured on 5 scalp electrodes(Fz, Cz, Pz, $T_7$, $T_8$) were compared between patients and controls. Results:The P300 latencies measured on Fz, Cz, Pz, and $T_7$ electrodes were significantly longer in patients than controls(p<0.05). The P300 amplitudes in patients were smaller than controls. However, the difference between them was not statistically significant. Conclusion:Analysis of the visual ERPs showed that the P300 latency is significantly delayed and the P300 amplitude is slightly smaller in patients than controls. These results are similar to established studies of the auditory P300 in schizophrenia.

  • PDF

AMPLITUDE CORRECTION FACTORS OF KOREAN VLBI NETWORK OBSERVATIONS

  • LEE, SANG-SUNG;BYUN, DO-YOUNG;OH, CHUNG SIK;KIM, HYO RYOUNG;KIM, JONGSOO;JUNG, TAEHYUN;OH, SE-JIN;ROH, DUK-GYOO;JUNG, DONG-KYU;YEOM, JAE-HWAN
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.229-236
    • /
    • 2015
  • We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22 GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Baseline Array (VLBA) observations at 22 GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C 454.3, NRAO 512, OJ 287, BL Lac, 3C 279, 1633+382, and 1510–089, which are almost unresolved for baselines in a range of 350-477 km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are selected, fringe-fitted, calibrated, and compared for their amplitudes. We find that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.

Measurement of Absolute Displacement-Amplitude of Ultrasonic Wave Using Piezo-Electric Detection Method (압전형 수신 기법을 이용한 초음파 절대변위진폭 측정)

  • Park, Seong-Hyun;Kim, Jongbeom;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process.

Cyclical Analysis of Construction Business Using Filtering Model (국내 건설경기의 순환변동 분석)

  • Suh, Myong-kyo;Kim, Hyung-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.300-309
    • /
    • 2017
  • This paper examines the cyclical fluctuation of 'construction orders' and 'construction investment' using HP filter, Bandpass filter and Beveridge-Nelson decomposition methods. The main results are as follows. As a result of the analysis of the cyclical fluctuation of construction orders, it was analyzed that there were about 7 cyclical fluctuations from 1976 to the first quarter of 2017. Construction orders for cyclical fluctuations peaked in the second quarter of 2015 and turned to a downward trend. On the other hand, construction investment has experienced about 6 cycles of fluctuations during the same period, and it has been rising continuously since the bottom of 3Q12. This is consistent with the general theory that construction orders precede construction investments. In addition, the comparison of the construction orders, construction investment, and GDP amplitude shows that the GDP amplitude is the smallest and stable, and the construction orders have the greatest variation in amplitude. Therefore, construction orders should be adjusted by government policy depending on economic fluctuations.

Behaviors of Reflected and Transmitted Waves for Geometric Change of Submerged Breakwater (잠제의 형상 변화에 따른 반사파 및 투과파의 거동특성)

  • Lee, Cheol-Eung;O, Won-Taek
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.139-148
    • /
    • 2000
  • A numerical model is represented to calculate the wave fields such as the reflected waves, the transmitted waves, and depth averaged velocities over submerged breakwaters for the normally incident wave trains of nonlinear monochromatic wave. The numerical model is correctly formulated by using both the finite amplitude shallow water equations with the effects of bottom friction and the explicit dissipative Lax-Wendroff finite difference scheme, also satisfactorily verified by comparison with the other results. The behaviors of reflected and transmitted waves with respect to geometric parameters of submerged breakwater such as the slope, crest depth, and crest width are numerically analyzed in this study. In particular, the reflection and transmission coefficients are quantitatively calculated as the function of geometric parameter of submerged breakwater. It is found that the crest depth among parameters related to practical design may be the most important parameter in designing the submerged breakwater. Therefore, the effective and economic performances of submerged breakwater should be depended on the determination of optimal crest depth.

  • PDF